Skip to main content

2019 | OriginalPaper | Buchkapitel

14. An Approach to Numerical Modeling of Temperature Field in Direct Metal Laser Sintering

verfasst von : Mihir Samantaray, Dhirendra Nath Thatoi, Seshadev Sahoo

Erschienen in: Advances in Materials, Mechanical and Industrial Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Direct metal laser sintering (DMLS) is an advanced manufacturing process in the class of modern additive manufacturing, which produces three-dimensional complex shapes from the powder material in a layered approach. It plays a significant role to manufacture metallic components directly from the metallic powders. Technological parameters of direct metal laser sintering determine the quality of the parts produced, i.e., porosity, residual stresses, and strength. The qualities of build parts are dependent on thermal and sintering behavior, which directly affected by the process parameters. In this process, a high-energy laser beam was utilized as the heat source to melt and fuse the powder particles and hence builds the three-dimensional solid object. To control the quality of the build parts, it necessitates to fundamentally understand the heat transfer mechanism. In this process, rapid heating and cooling take place which results in an unexpected change in temperature in the scanned layers. This change in temperature persuade thermal stresses in the build part after the accomplishment of the process, and it can be destructive to the quality and performance of the build parts which hinders its end-user applications. In response to this fact, it is important to analyze the heat transfer mechanism during the direct metal laser sintering process. The present research work focused on to simulate the three-dimensional transient temperature field in the build part in direct metal laser sintering of AlSi10Mg alloy powder by using ANSYS platform. The model consists of a stainless steel substrate with the dimension of 3 mm × 3 mm × 2 mm and AlSi10Mg powder layer having the dimension of 3 mm × 3 mm × 1 mm. The simulations were carried out by considering radiation, convection, and temperature-dependent thermo-physical properties of alloy powder. The heat source was presumed as the Gaussian heat source. The temperature variation, thermal history, molten pool dimension, and sintering depth with respect to process parameters in the direct metal laser sintering process were investigated. From the simulation result, the temperature profile along the scanned layers was predicted as a function of process parameters. It has been observed that with the increase in scan speed from 100 to 400 mm/s, the temperature in the build part decreases from 1483 to 1196 °C and reverse phenomena was observed with increase in laser power. Similarly, the sintering depth of the powder bed increases from 0.061 to 0.872 mm with the increase in laser power from 50 to 130 W. This model will act as an important tool for the design and optimization of process parameters in DMLS process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Olakanmi, E.O., Cochrane, R.F., Dalgarno, K.W.: A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: processing, microstructure, and properties. Prog. Mater. Sci. 74, 401–477 (2015)CrossRef Olakanmi, E.O., Cochrane, R.F., Dalgarno, K.W.: A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: processing, microstructure, and properties. Prog. Mater. Sci. 74, 401–477 (2015)CrossRef
2.
Zurück zum Zitat Nandy, J., Sarangi, H., Sahoo, S.: Microstructure evolution of Al-Si-10Mg in direct metal laser sintering using phase field modeling. Adv. Manufact. 6, 107–117 (2018)CrossRef Nandy, J., Sarangi, H., Sahoo, S.: Microstructure evolution of Al-Si-10Mg in direct metal laser sintering using phase field modeling. Adv. Manufact. 6, 107–117 (2018)CrossRef
3.
Zurück zum Zitat Atzeni, E., Salmi, A.: Study on unsupported overhangs of AlSi10Mg parts processed by direct metal laser sintering (DMLS). J. Manufact. Process. 20, 500–506 (2015)CrossRef Atzeni, E., Salmi, A.: Study on unsupported overhangs of AlSi10Mg parts processed by direct metal laser sintering (DMLS). J. Manufact. Process. 20, 500–506 (2015)CrossRef
4.
Zurück zum Zitat Wong, K.V., Hernandez, A.: A review of additive manufacturing. ISRN Mech. Eng. 2012, 1–10 (2012)CrossRef Wong, K.V., Hernandez, A.: A review of additive manufacturing. ISRN Mech. Eng. 2012, 1–10 (2012)CrossRef
5.
Zurück zum Zitat Tolochko, N.K., Mozzharov, S.E., Yadroitsev, I.A., Laoui, T., Froyen, L., Titov, V.I., Ignatiev, M.B.: Balling processes during selective laser treatment of powders. Rapid Prototyping J. 10, 78–87 (2004)CrossRef Tolochko, N.K., Mozzharov, S.E., Yadroitsev, I.A., Laoui, T., Froyen, L., Titov, V.I., Ignatiev, M.B.: Balling processes during selective laser treatment of powders. Rapid Prototyping J. 10, 78–87 (2004)CrossRef
6.
Zurück zum Zitat Kruth, J.P., Wang, X., Laoui, T., Froyen, L.: Binding mechanisms in selective laser sintering and selective laser melting. Assembly Autom. 23, 357–371 (2003)CrossRef Kruth, J.P., Wang, X., Laoui, T., Froyen, L.: Binding mechanisms in selective laser sintering and selective laser melting. Assembly Autom. 23, 357–371 (2003)CrossRef
7.
Zurück zum Zitat Romano, J., Ladani, L., Sadowski, M.: Thermal modeling of laser based additive manufacturing processes within common materials. Procedia Manufact. 1, 238–250 (2015)CrossRef Romano, J., Ladani, L., Sadowski, M.: Thermal modeling of laser based additive manufacturing processes within common materials. Procedia Manufact. 1, 238–250 (2015)CrossRef
8.
Zurück zum Zitat Verma, A., Tyagi, S., Yang, K.: Modeling and optimization of direct metal laser sintering process. Int. J. Adv. Manuf. Technol. 77, 847–860 (2015)CrossRef Verma, A., Tyagi, S., Yang, K.: Modeling and optimization of direct metal laser sintering process. Int. J. Adv. Manuf. Technol. 77, 847–860 (2015)CrossRef
9.
Zurück zum Zitat Kruth, J.P., Mercelis, P., Vaerenbergh, J.V., Froyen, L., Rombouts, M.: Binding mechanism in selective laser sintering and selective laser melting. Rapid prototyping J. 11, 26–36 (2005)CrossRef Kruth, J.P., Mercelis, P., Vaerenbergh, J.V., Froyen, L., Rombouts, M.: Binding mechanism in selective laser sintering and selective laser melting. Rapid prototyping J. 11, 26–36 (2005)CrossRef
10.
Zurück zum Zitat Chen, T., Zhang, Y.: A particle shrinkage model for selective laser sintering of two-component metal powder layer. Int. J. Heat Mass Transf. 49, 1489–1492 (2006)CrossRef Chen, T., Zhang, Y.: A particle shrinkage model for selective laser sintering of two-component metal powder layer. Int. J. Heat Mass Transf. 49, 1489–1492 (2006)CrossRef
11.
Zurück zum Zitat Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R.: Laser additive manufacturing of metallic components: materials, processes, and mechanisms. Int. Mater. Rev. 57(3), 133–164 (2012)CrossRef Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R.: Laser additive manufacturing of metallic components: materials, processes, and mechanisms. Int. Mater. Rev. 57(3), 133–164 (2012)CrossRef
12.
Zurück zum Zitat Frazier, W.E.: Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23(6), 1917–1928 (2014)CrossRef Frazier, W.E.: Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23(6), 1917–1928 (2014)CrossRef
13.
Zurück zum Zitat Zeng, K., Pal, D., Stucker, B.: A review of thermal analysis methods in laser sintering and selective laser melting. In: Proceedings of Solid Freeform Fabrication Symposium Austin, TX, vol. 60, pp. 796–814 (2012) Zeng, K., Pal, D., Stucker, B.: A review of thermal analysis methods in laser sintering and selective laser melting. In: Proceedings of Solid Freeform Fabrication Symposium Austin, TX, vol. 60, pp. 796–814 (2012)
14.
Zurück zum Zitat Tang, Y., Loh, H.T., Wong, Y.S., Fuh, J.Y.H., Lu, L., Wang, X.: Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts. J. Mater. Process. Technol. 140, 368–372 (2003)CrossRef Tang, Y., Loh, H.T., Wong, Y.S., Fuh, J.Y.H., Lu, L., Wang, X.: Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts. J. Mater. Process. Technol. 140, 368–372 (2003)CrossRef
15.
Zurück zum Zitat Dong, L., Makradi, A., Ahzi, S., Remond, Y.: Three-dimensional transient finite element analysis of the selective laser sintering process. J. Mater. Process. Technol. 209, 700–706 (2009)CrossRef Dong, L., Makradi, A., Ahzi, S., Remond, Y.: Three-dimensional transient finite element analysis of the selective laser sintering process. J. Mater. Process. Technol. 209, 700–706 (2009)CrossRef
16.
Zurück zum Zitat Yuan, P., Gu, D.: Molten pool behavior and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments. J. Phys. D Appl. Phys. 48, 1–16 (2015) Yuan, P., Gu, D.: Molten pool behavior and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments. J. Phys. D Appl. Phys. 48, 1–16 (2015)
17.
Zurück zum Zitat Simchi, A.: Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater. Sci. Eng. 428, 148–155 (2006)CrossRef Simchi, A.: Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater. Sci. Eng. 428, 148–155 (2006)CrossRef
18.
Zurück zum Zitat Jian, X., Weimin, S., Rana, S.R.: 3D modeling and testing of transient temperature in selective laser sintering (SLS) process. Optik 124, 301–304 (2013)CrossRef Jian, X., Weimin, S., Rana, S.R.: 3D modeling and testing of transient temperature in selective laser sintering (SLS) process. Optik 124, 301–304 (2013)CrossRef
19.
Zurück zum Zitat Li, Y., Gu, D.: Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater. Des. 63, 856–867 (2014)CrossRef Li, Y., Gu, D.: Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater. Des. 63, 856–867 (2014)CrossRef
20.
Zurück zum Zitat Shi, Q., Gu, D., Xia, M., Cao, S., Rong, T.: Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt. Laser Technol. 84, 9–22 (2016)CrossRef Shi, Q., Gu, D., Xia, M., Cao, S., Rong, T.: Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt. Laser Technol. 84, 9–22 (2016)CrossRef
21.
Zurück zum Zitat Hu, H., Ding, X., Wang, L.: Numerical analysis of heat transfer during multi-layer selective laser melting of AlSi10Mg. Optik 127, 8883–8891 (2016)CrossRef Hu, H., Ding, X., Wang, L.: Numerical analysis of heat transfer during multi-layer selective laser melting of AlSi10Mg. Optik 127, 8883–8891 (2016)CrossRef
22.
Zurück zum Zitat Sahoo, S., Chou, K.: Phase-field simulation of microstructure evolution of Ti-6Al-4 V in electron beam additive manufacturing process. Addit. Manufact. 9, 14–24 (2016)CrossRef Sahoo, S., Chou, K.: Phase-field simulation of microstructure evolution of Ti-6Al-4 V in electron beam additive manufacturing process. Addit. Manufact. 9, 14–24 (2016)CrossRef
23.
Zurück zum Zitat Lee, W.H., Zhang, Y., Zhang, J.: Discrete element modeling of powder flow and laser heating in direct metal laser sintering process. Powder Technol. 315, 300–308 (2017)CrossRef Lee, W.H., Zhang, Y., Zhang, J.: Discrete element modeling of powder flow and laser heating in direct metal laser sintering process. Powder Technol. 315, 300–308 (2017)CrossRef
24.
Zurück zum Zitat Zhao, X., Iyer, A., Promoppatum, P., Yao, S.C.: Numerical modeling of the thermal behavior and residual stress in the direct metal laser sintering process of titanium alloy products. Addit. Manufact. 14, 126–136 (2017)CrossRef Zhao, X., Iyer, A., Promoppatum, P., Yao, S.C.: Numerical modeling of the thermal behavior and residual stress in the direct metal laser sintering process of titanium alloy products. Addit. Manufact. 14, 126–136 (2017)CrossRef
25.
Zurück zum Zitat Dong, L., Correia, J.P.M., Barth, N., Ahzi, S.: Finite element simulations of temperature distribution and of densification of a titanium powder during metal laser sintering. Addit. Manufact. 13, 37–48 (2017)CrossRef Dong, L., Correia, J.P.M., Barth, N., Ahzi, S.: Finite element simulations of temperature distribution and of densification of a titanium powder during metal laser sintering. Addit. Manufact. 13, 37–48 (2017)CrossRef
26.
Zurück zum Zitat Kundakcioglu, E., Lazoglu, I., Rawal, S.: Transient thermal modeling of laser-based additive manufacturing for 3D freeform structures. Int. J. Adv. Manuf. Technol. 85, 493–501 (2016)CrossRef Kundakcioglu, E., Lazoglu, I., Rawal, S.: Transient thermal modeling of laser-based additive manufacturing for 3D freeform structures. Int. J. Adv. Manuf. Technol. 85, 493–501 (2016)CrossRef
27.
Zurück zum Zitat Ojha, A., Samantaray, M., Thatoi, D.N., Sahoo, S.: Continuum simulation of heat transfer and solidification behavior of AlSi10Mg in direct metal laser sintering process. IOP Conf. Ser. Mater. Sci. Eng. 338, 1–6 (2018)CrossRef Ojha, A., Samantaray, M., Thatoi, D.N., Sahoo, S.: Continuum simulation of heat transfer and solidification behavior of AlSi10Mg in direct metal laser sintering process. IOP Conf. Ser. Mater. Sci. Eng. 338, 1–6 (2018)CrossRef
28.
Zurück zum Zitat Panda, B.K., Sahoo, S.: Numerical simulation of residual stress in laser based additive manufacturing process. IOP Conf. Ser. Mater. Sci. Eng. 338, 1–6 (2018)CrossRef Panda, B.K., Sahoo, S.: Numerical simulation of residual stress in laser based additive manufacturing process. IOP Conf. Ser. Mater. Sci. Eng. 338, 1–6 (2018)CrossRef
29.
Zurück zum Zitat Labudovic, M., Hu, D., Kovacevic, R.: A three dimensional model for direct metal laser powder deposition and rapid prototyping. J. Mater. Sci. 38, 35–49 (2003)CrossRef Labudovic, M., Hu, D., Kovacevic, R.: A three dimensional model for direct metal laser powder deposition and rapid prototyping. J. Mater. Sci. 38, 35–49 (2003)CrossRef
30.
Zurück zum Zitat Roberts, I.A., Wang, C.J.: A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int. J. Mach. Tool Manuf. 49, 916–923 (2009)CrossRef Roberts, I.A., Wang, C.J.: A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int. J. Mach. Tool Manuf. 49, 916–923 (2009)CrossRef
31.
Zurück zum Zitat Nandy, J., Sarangi, H., Sahoo, S.: Modeling of microstructure evolution in direct metal laser sintering: a phase field approach. IOP Conf. Ser. Mater. Sci. Eng. 178, 1–8 (2017)CrossRef Nandy, J., Sarangi, H., Sahoo, S.: Modeling of microstructure evolution in direct metal laser sintering: a phase field approach. IOP Conf. Ser. Mater. Sci. Eng. 178, 1–8 (2017)CrossRef
32.
Zurück zum Zitat Bogaard, R.H., Desai, P.D., Li, H.H., Ho, C.Y.: Thermophysical properties of stainless steels. Thermochim. Acta 218, 373–393 (1993)CrossRef Bogaard, R.H., Desai, P.D., Li, H.H., Ho, C.Y.: Thermophysical properties of stainless steels. Thermochim. Acta 218, 373–393 (1993)CrossRef
Metadaten
Titel
An Approach to Numerical Modeling of Temperature Field in Direct Metal Laser Sintering
verfasst von
Mihir Samantaray
Dhirendra Nath Thatoi
Seshadev Sahoo
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-96968-8_14

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.