Skip to main content

2021 | OriginalPaper | Buchkapitel

An Approach to Reduce the Number of Conditional Independence Tests in the PC Algorithm

verfasst von : Marcel Wienöbst, Maciej Liśkiewicz

Erschienen in: KI 2021: Advances in Artificial Intelligence

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The PC algorithm is one of the most prominent constraint-based methods for learning causal structures from observational data. The algorithm relies on conditional independence (CI) tests to infer the structure and its time consumption heavily depends on the number of performed CI tests. We present a modification, called ED-PC, such that – in the oracle model – both ED-PC and the original PC algorithm infer the same structure. However, by using a new idea allowing the detection of a v-structure without explicit knowledge of a separating set, our method reduces the number of needed CI tests significantly. This is made possible by detecting nonadjacencies considerably earlier.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
For exact definitions of the notions used in the algorithm, see Sect. 2.
 
2
We use iff as shorthand for “if and only if”.
 
Literatur
1.
Zurück zum Zitat Andersson, S.A., Madigan, D., Perlman, M.D.: A characterization of Markov equivalence classes for acyclic digraphs. Ann. Stat. 25(2), 505–541 (1997)MathSciNetMATH Andersson, S.A., Madigan, D., Perlman, M.D.: A characterization of Markov equivalence classes for acyclic digraphs. Ann. Stat. 25(2), 505–541 (1997)MathSciNetMATH
2.
Zurück zum Zitat Baba, K., Shibata, R., Sibuya, M.: Partial correlation and conditional correlation as measures of conditional independence. Aust. N. Z. J. Stat. 46(4), 657–664 (2004)MathSciNetCrossRef Baba, K., Shibata, R., Sibuya, M.: Partial correlation and conditional correlation as measures of conditional independence. Aust. N. Z. J. Stat. 46(4), 657–664 (2004)MathSciNetCrossRef
3.
Zurück zum Zitat Bergsma, W.P.: Testing conditional independence for continuous random variables. Eurandom (2004) Bergsma, W.P.: Testing conditional independence for continuous random variables. Eurandom (2004)
4.
Zurück zum Zitat Colombo, D., Maathuis, M.H., Kalisch, M., Richardson, T.S.: Learning high-dimensional directed acyclic graphs with latent and selection variables. Ann. Stat. 40, 294–321 (2012)MathSciNetCrossRef Colombo, D., Maathuis, M.H., Kalisch, M., Richardson, T.S.: Learning high-dimensional directed acyclic graphs with latent and selection variables. Ann. Stat. 40, 294–321 (2012)MathSciNetCrossRef
5.
Zurück zum Zitat Doran, G., Muandet, K., Zhang, K., Schölkopf, B.: A permutation-based kernel conditional independence test. In: UAI, pp. 132–141 (2014) Doran, G., Muandet, K., Zhang, K., Schölkopf, B.: A permutation-based kernel conditional independence test. In: UAI, pp. 132–141 (2014)
6.
Zurück zum Zitat Harris, N., Drton, M.: PC algorithm for nonparanormal graphical models. J. Mach. Learn. Res. 14(1), 3365–3383 (2013)MathSciNetMATH Harris, N., Drton, M.: PC algorithm for nonparanormal graphical models. J. Mach. Learn. Res. 14(1), 3365–3383 (2013)MathSciNetMATH
7.
Zurück zum Zitat Kalisch, M., Bühlmann, P.: Estimating high-dimensional directed acyclic graphs with the PC-Algorithm. J. Mach. Learn. Res. 8, 613–636 (2007)MATH Kalisch, M., Bühlmann, P.: Estimating high-dimensional directed acyclic graphs with the PC-Algorithm. J. Mach. Learn. Res. 8, 613–636 (2007)MATH
8.
Zurück zum Zitat Meek, C.: Causal inference and causal explanation with background knowledge. In: Proceedings of UAI 1995, pp. 403–410. MK Publishers Inc. (1995) Meek, C.: Causal inference and causal explanation with background knowledge. In: Proceedings of UAI 1995, pp. 403–410. MK Publishers Inc. (1995)
9.
Zurück zum Zitat Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRef Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRef
10.
Zurück zum Zitat Scutari, M.: Learning Bayesian networks with the bnlearn R package. J. Stat. Softw. 35(3), 1–22 (2010) Scutari, M.: Learning Bayesian networks with the bnlearn R package. J. Stat. Softw. 35(3), 1–22 (2010)
11.
Zurück zum Zitat Sondhi, A., Shojaie, A.: The reduced PC-algorithm: improved causal structure learning in large random networks. J. Mach. Learn. Res. 20(164), 1–31 (2019)MathSciNetMATH Sondhi, A., Shojaie, A.: The reduced PC-algorithm: improved causal structure learning in large random networks. J. Mach. Learn. Res. 20(164), 1–31 (2019)MathSciNetMATH
12.
Zurück zum Zitat Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT Press, Cambridge (2000)MATH Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT Press, Cambridge (2000)MATH
13.
Zurück zum Zitat Talvitie, T., Parviainen, P.: Learning Bayesian networks with cops and robbers. In: The 10th International Conference on Probabilistic Graphical Models (2020) Talvitie, T., Parviainen, P.: Learning Bayesian networks with cops and robbers. In: The 10th International Conference on Probabilistic Graphical Models (2020)
14.
Zurück zum Zitat Verma, T., Pearl, J.: Equivalence and synthesis of causal models. In: Proceedings of UAI 1990, pp. 255–270. Elsevier (1990) Verma, T., Pearl, J.: Equivalence and synthesis of causal models. In: Proceedings of UAI 1990, pp. 255–270. Elsevier (1990)
15.
Zurück zum Zitat Wienöbst, M., Liśkiewicz, M.: Recovering causal structures from low-order conditional independencies. In: 34th AAAI Conference on Artificial Intelligence (AAAI), pp. 10302–10309 (2020) Wienöbst, M., Liśkiewicz, M.: Recovering causal structures from low-order conditional independencies. In: 34th AAAI Conference on Artificial Intelligence (AAAI), pp. 10302–10309 (2020)
16.
Zurück zum Zitat Zhang, H., Zhou, S., Zhang, K., Guan, J.: Causal discovery using regression-based conditional independence tests. In: Thirty-First AAAI Conference on Artificial Intelligence (2017) Zhang, H., Zhou, S., Zhang, K., Guan, J.: Causal discovery using regression-based conditional independence tests. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
17.
Zurück zum Zitat Zhang, K., Peters, J., Janzing, D., Schölkopf, B.: Kernel-based conditional independence test and application in causal discovery. In: 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), pp. 804–813. AUAI Press (2011) Zhang, K., Peters, J., Janzing, D., Schölkopf, B.: Kernel-based conditional independence test and application in causal discovery. In: 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), pp. 804–813. AUAI Press (2011)
Metadaten
Titel
An Approach to Reduce the Number of Conditional Independence Tests in the PC Algorithm
verfasst von
Marcel Wienöbst
Maciej Liśkiewicz
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-87626-5_21