Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Social Choice and Welfare 3/2021

29.03.2021 | Original Paper

An Arrovian impossibility in combining ranking and evaluation

verfasst von: Justin Kruger, M. Remzi Sanver

Erschienen in: Social Choice and Welfare | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In a world where voters not only rank the alternatives but also qualify them as “approved” or “disapproved”, we observe that majoritarianism in preferences and majoritarianism in approvals are logically incompatible. We show that this observation generalises to the following result: every aggregation rule that respects unanimity and decomposes the aggregation of preferences and approvals is dictatorial. Our result implies an incompatibility between ordinal and evaluative approaches to social choice theory under 2 weak assumptions: respect for unanimity and independence of evaluation of each alternative. We describe possibilities when the latter assumption is relaxed. On the other hand, our impossibility generalises to the case where there are more than the two evaluative levels of “approved” and “disapproved”.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The term “alternative-wise” indicates a distinction from a weaker version of unanimity which requires that if all voters have exactly the same evaluations for all the alternatives, then the output evaluations are identical. We do not consider the weaker version of unanimity in this paper.
 
2
By g(R)|{x,y}, we mean the restriction of g(R) over {x, y}; i.e., the ranking of {x, y} as in g(R). In a similar vein, R|{x,y} is the restriction of R over {x, y}, i.e., the preference profile over {x, y} where each i ∈ N orders {x, y} as in Ri.
 
3
To ease presentation, we transpose the Cartesian product without comment, i.e., when we write (R, B), where R = (R1,Rn) and B = (B1, …, Bn), we are technically referring to the profile ((R1, B1), … (Rn, Bn)).
 
4
The restriction to the domain Π is reasonable for many applications of the preference-approval framework. Suppose we need to select a date for a meeting; attendees may have preferences over those dates they can attend, but it seems reasonable to assume that they would be indifferent between those dates that they are unavailable.
 
5
For preference-approval aggregators, and other functions that return pairs, sometimes we will want to isolate the first or second coordinate of the returned value. We do this by subscripting the function with 1 or 2. Generally, for a function of type h: XY × Z, we write h1 for the projection of the function onto the first coordinate and h2 for the projection of the function onto the second coordinate, i.e., for h(x) = (y, z) we have h1(x) = y and h2(x) = z.
 
6
Our definitions here are given in functional style, i.e., functions are used as arguments. We assume left associativity of expressions, i.e., h(i)(x) is (h(i))(x), indeed we will typically write hi(x); and that we assume right associativity of type definitions, i.e., h: XYZ is implicitly h: X → (YZ).
 
7
If one thinks of 2 as the set {0, 1}, our previous definition of preference-approvals comprises the special case where E = 2.
 
8
As noted by Jean-François Laslier, methods that implicitly select the alternative with the highest median have been rediscovered many times. As well as Bucklin voting (used under this name in the early twentieth century) and majoritarian compromise (Sertel and Yılmaz 1999), such a method was proposed as early as 1793 by Condorcet (McLean et al. 1994).
 
9
Later work picks up this approach and compares different evaluative methods within an evaluative framework, for example work by Brams and Potthoff (2015).
 
10
Consider the back-and-forth between Saari and Van Newenhizen (1988), Brams et al. (1988b), Saari and Van Newenhizen (1988) and again Brams et al. (1988a).
 
11
For example: Balinski and Laraki (2007), Felsenthal and Machover (2008), Brams (2011), Edelman (2012), Balinski and Laraki (2016) and Laslier (2017).
 
12
The preference-approval framework that we treat in this paper can, as Sanver (2010) dis-cusses, be mathematically placed within the traditional literature of social welfare functionals (Sen 1977) where cardinal or interpersonal comparisons are allowed. Preference-approvals present a weak version of ordinal level comparisons (OLC) which are explored by Roberts (1980). The closest previous work of this type that we are aware of is due to List (2001), who considers a narrow informational addition that he calls OLC + 0, which only allows a single level of ordinal comparability. This is almost equivalent to the preference-approval framework, but it allows for alternatives to be on the zero-line, thus there is a third evaluative category within which indifference is forced. Also, List’s results concern functions that produce choice sets or ordinal rankings, not functions that output preference-approvals or their equivalent.
 
13
In particular we thank Phillipe Mongin for considerable efforts made in this direction.
 
Literatur
Zurück zum Zitat Alcantud JCR, Laruelle A (2014) Disapproval voting: a characterization. Soc Choice Welf 43(1):1–10 CrossRef Alcantud JCR, Laruelle A (2014) Disapproval voting: a characterization. Soc Choice Welf 43(1):1–10 CrossRef
Zurück zum Zitat Aleskerov F, Yakuba V, Yuzbashev D (2007) A ‘threshold aggregation’ of three-graded rankings. Math Soc Sci 53:106–110 CrossRef Aleskerov F, Yakuba V, Yuzbashev D (2007) A ‘threshold aggregation’ of three-graded rankings. Math Soc Sci 53:106–110 CrossRef
Zurück zum Zitat Arrow KJ (1950) A difficulty in the concept of social welfare. J Polit Econ 58(4):328–346 CrossRef Arrow KJ (1950) A difficulty in the concept of social welfare. J Polit Econ 58(4):328–346 CrossRef
Zurück zum Zitat Balinski M, Laraki R (2007) A theory of measuring, electing, and ranking. Proc Natl Acad Sci 104(21):8720–8725 CrossRef Balinski M, Laraki R (2007) A theory of measuring, electing, and ranking. Proc Natl Acad Sci 104(21):8720–8725 CrossRef
Zurück zum Zitat Balinski M, Laraki R (2011) Majority judgment: measuring, ranking, and electing. MIT Press Balinski M, Laraki R (2011) Majority judgment: measuring, ranking, and electing. MIT Press
Zurück zum Zitat Bassett GW, Persky J (1999) Robust voting. Public Choice 99(3):299–310 CrossRef Bassett GW, Persky J (1999) Robust voting. Public Choice 99(3):299–310 CrossRef
Zurück zum Zitat Zahid MA, De Swart H (2015) The Borda majority count. Inf Sci 295:429–440 CrossRef Zahid MA, De Swart H (2015) The Borda majority count. Inf Sci 295:429–440 CrossRef
Zurück zum Zitat Brams SJ, Fishburn PC (1978) Approval voting. Am Polit Sci Rev 72(03):831–847 CrossRef Brams SJ, Fishburn PC (1978) Approval voting. Am Polit Sci Rev 72(03):831–847 CrossRef
Zurück zum Zitat Brams SJ, Potthoff RF (2015) The paradox of grading systems. Public Choice 165(3–4):193–210 CrossRef Brams SJ, Potthoff RF (2015) The paradox of grading systems. Public Choice 165(3–4):193–210 CrossRef
Zurück zum Zitat Brams SJ, Sanver MR (2009) Voting systems that combine approval and preference. In: Brams SJ, Gehrlein WV, Roberts FS (eds) The mathematics of preference, choice and order. Springer, Berlin, pp 215–237 CrossRef Brams SJ, Sanver MR (2009) Voting systems that combine approval and preference. In: Brams SJ, Gehrlein WV, Roberts FS (eds) The mathematics of preference, choice and order. Springer, Berlin, pp 215–237 CrossRef
Zurück zum Zitat Brams SJ, Fishburn PC, Merrill S (1988a) Rejoinder to Saari and Van Newenhizen. Public Choice 59(2):149 CrossRef Brams SJ, Fishburn PC, Merrill S (1988a) Rejoinder to Saari and Van Newenhizen. Public Choice 59(2):149 CrossRef
Zurück zum Zitat Brams SJ, Fishburn PC, Merrill S (1988b) The responsiveness of approval voting: Comments on Saari and Van Newenhizen. Public Choice 59(2):121–131 CrossRef Brams SJ, Fishburn PC, Merrill S (1988b) The responsiveness of approval voting: Comments on Saari and Van Newenhizen. Public Choice 59(2):121–131 CrossRef
Zurück zum Zitat Campbell DE, Kelly JS (2000) Information and preference aggregation. Soc Choice Welf 17(1):3–24 CrossRef Campbell DE, Kelly JS (2000) Information and preference aggregation. Soc Choice Welf 17(1):3–24 CrossRef
Zurück zum Zitat Dietrich F (2015) Aggregation theory and the relevance of some issues to others. Journal of Economic Theory 160:463–493 CrossRef Dietrich F (2015) Aggregation theory and the relevance of some issues to others. Journal of Economic Theory 160:463–493 CrossRef
Zurück zum Zitat Dietrich F, List C (2007) Arrow’s theorem in judgment aggregation. Soc Choice Welf 29(1):19–33 CrossRef Dietrich F, List C (2007) Arrow’s theorem in judgment aggregation. Soc Choice Welf 29(1):19–33 CrossRef
Zurück zum Zitat Edelman PH (2012) Review of majority judgment: measuring, ranking and electing. Public Choice 151(3/4):807–810 CrossRef Edelman PH (2012) Review of majority judgment: measuring, ranking and electing. Public Choice 151(3/4):807–810 CrossRef
Zurück zum Zitat Felsenthal DS, Machover M (2008) The majority judgement voting procedure: a critical evaluation. Homo Oeconomicus 25(3):319–334 Felsenthal DS, Machover M (2008) The majority judgement voting procedure: a critical evaluation. Homo Oeconomicus 25(3):319–334
Zurück zum Zitat Gaertner W, Xu Y (2012) A general scoring rule. Math Soc Sci 63(3):193–196 CrossRef Gaertner W, Xu Y (2012) A general scoring rule. Math Soc Sci 63(3):193–196 CrossRef
Zurück zum Zitat Hillinger C (2005) The case for utilitarian voting. Discussion paper 2005-11, University of Munich Hillinger C (2005) The case for utilitarian voting. Discussion paper 2005-11, University of Munich
Zurück zum Zitat Kelly JS (1994) The Bordes–LeBreton exceptional case. Soc Choice Welf 11(3):273–281 CrossRef Kelly JS (1994) The Bordes–LeBreton exceptional case. Soc Choice Welf 11(3):273–281 CrossRef
Zurück zum Zitat Laslier J-F (2017) L’étrange “jugement majoritaire”. In: Working papers 2017-23, PSE Laslier J-F (2017) L’étrange “jugement majoritaire”. In: Working papers 2017-23, PSE
Zurück zum Zitat List C (2001) A note on introducing a “zero-line” of welfare as an escape route from Arrow’s theorem. Pac Econ Rev 6(2):223–238 CrossRef List C (2001) A note on introducing a “zero-line” of welfare as an escape route from Arrow’s theorem. Pac Econ Rev 6(2):223–238 CrossRef
Zurück zum Zitat List C, Puppe C (2009) Judgment aggregation. In: Anand P, Pattanaik P, Puppe C (eds) Handbook of rational and social choice. Oxford University Press List C, Puppe C (2009) Judgment aggregation. In: Anand P, Pattanaik P, Puppe C (eds) Handbook of rational and social choice. Oxford University Press
Zurück zum Zitat Macé A (2018) Voting with evaluations: characterizations of evaluative voting and range voting. J Math Econ 79:10–17 CrossRef Macé A (2018) Voting with evaluations: characterizations of evaluative voting and range voting. J Math Econ 79:10–17 CrossRef
Zurück zum Zitat Maniquet F, Mongin P (2016) A theorem on aggregating classifica-tions. Math Soc Sci 79:6–10 CrossRef Maniquet F, Mongin P (2016) A theorem on aggregating classifica-tions. Math Soc Sci 79:6–10 CrossRef
Zurück zum Zitat May KO (1952) A set of independent necessary and sufficient conditions for simple majority decision. Econometrica 20(4):680–684 CrossRef May KO (1952) A set of independent necessary and sufficient conditions for simple majority decision. Econometrica 20(4):680–684 CrossRef
Zurück zum Zitat McLean I, Hewitt F et al (1994) Condorcet: foundations of social choice and political theory. Edward Elgar Publishing, Cheltenham McLean I, Hewitt F et al (1994) Condorcet: foundations of social choice and political theory. Edward Elgar Publishing, Cheltenham
Zurück zum Zitat Mongin P (2012) The doctrinal paradox, the discursive dilemma, and logical aggregation theory. Theor Decis 73(3):315–355 CrossRef Mongin P (2012) The doctrinal paradox, the discursive dilemma, and logical aggregation theory. Theor Decis 73(3):315–355 CrossRef
Zurück zum Zitat Nehring K (2003) Arrow’s theorem as a corollary. Econ Lett 80(3):379–382 CrossRef Nehring K (2003) Arrow’s theorem as a corollary. Econ Lett 80(3):379–382 CrossRef
Zurück zum Zitat Pivato M (2014) Formal utilitarianism and range voting. Math Soc Sci 67:50–56 CrossRef Pivato M (2014) Formal utilitarianism and range voting. Math Soc Sci 67:50–56 CrossRef
Zurück zum Zitat Roberts KW (1980) Possibility theorems with interpersonally comparable welfare levels. Rev Econ Stud 47(2):409–420 CrossRef Roberts KW (1980) Possibility theorems with interpersonally comparable welfare levels. Rev Econ Stud 47(2):409–420 CrossRef
Zurück zum Zitat Saari DG, Van Newenhizen J (1988) The problem of indeterminacy in approval, multiple, and truncated voting systems. Public Choice 59(2):101–120 CrossRef Saari DG, Van Newenhizen J (1988) The problem of indeterminacy in approval, multiple, and truncated voting systems. Public Choice 59(2):101–120 CrossRef
Zurück zum Zitat Sanver MR (2010) Approval as an intrinsic part of preference. In: Laslier J-F, Sanver MR (eds) Handbook on approval voting. Springer, Berlin, pp 469–481 CrossRef Sanver MR (2010) Approval as an intrinsic part of preference. In: Laslier J-F, Sanver MR (eds) Handbook on approval voting. Springer, Berlin, pp 469–481 CrossRef
Zurück zum Zitat Sen A (1977) On weights and measures: informational constraints in social welfare analysis. Econometrica 45(7):1539–1572 CrossRef Sen A (1977) On weights and measures: informational constraints in social welfare analysis. Econometrica 45(7):1539–1572 CrossRef
Zurück zum Zitat Sertel MR, Yılmaz B (1999) The majoritarian compromise is majoritarian-optimal and subgame-perfect implementable. Soc Choice Welf 16(4):615–627 CrossRef Sertel MR, Yılmaz B (1999) The majoritarian compromise is majoritarian-optimal and subgame-perfect implementable. Soc Choice Welf 16(4):615–627 CrossRef
Zurück zum Zitat Wilson R (1972) Social choice theory without the Pareto principle. J Econ Theory 5:478–486 CrossRef Wilson R (1972) Social choice theory without the Pareto principle. J Econ Theory 5:478–486 CrossRef
Zurück zum Zitat Wilson R (1975) On the theory of aggregation. J Econ Theory 10:89–99 CrossRef Wilson R (1975) On the theory of aggregation. J Econ Theory 10:89–99 CrossRef
Metadaten
Titel
An Arrovian impossibility in combining ranking and evaluation
verfasst von
Justin Kruger
M. Remzi Sanver
Publikationsdatum
29.03.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Social Choice and Welfare / Ausgabe 3/2021
Print ISSN: 0176-1714
Elektronische ISSN: 1432-217X
DOI
https://doi.org/10.1007/s00355-021-01327-w

Weitere Artikel der Ausgabe 3/2021

Social Choice and Welfare 3/2021 Zur Ausgabe

Premium Partner