Skip to main content

2024 | OriginalPaper | Buchkapitel

An Artificial Intelligence Approach to Quantifying Exercise Form for Optimal Performance and Injury Prevention

verfasst von : K. R. Sowmia, T. Jayaganeshan, F. Mohammed Abraar Khan, S. Madhesh, S. Kabilesh

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Human body posture estimation remains one of the most challenging problems despite substantial research and improvements in the fields of artificial intelligence and computer vision. Human pose detection has several uses, including assisted living, video surveillance, biometrics, public security, and at-home health monitoring. Nowadays, teenagers between the ages of sixteen and twenty-five are encouraged to engage in rigorous training because they are interested in maintaining a specific degree of physical fitness in their bodies. If they do not maintain good form or posture, this tough training activity could lead to muscular injuries or any other small or serious problems. They should engage a personal trainer or someone who can help them follow the right methods to sustain and prevent injuries if they want to keep up with all of this. This only applies to those who perform these intense exercises in a gym or other public space; at-home exercisers would not be able to afford personal trainers and instructors. One can utilize an AI-trained model to maintain good body posture for intense workouts. The analysis and evaluation of the participants’ exercise movements will be done by the study using a combination of motion sensors, cameras, and machine learning algorithms. The AI-powered system will examine each participant's form, offer real-time feedback, and correct mistakes made while training with various workouts. This AI-trained model serves as a personalized trainer that can be tweaked to the user's specifications. The AI model assigns a preference category to each workout and notifies the user if it detects a posture issue.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
5.
Zurück zum Zitat Kondragunta, J., Hirtz, G.: Gait parameter estimation of elderly people using 3D human pose estimation in early detection of dementia. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, pp. 5798–5801 (2020). https://doi.org/10.1109/EMBC44109.2020.9175766 Kondragunta, J., Hirtz, G.: Gait parameter estimation of elderly people using 3D human pose estimation in early detection of dementia. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, pp. 5798–5801 (2020). https://​doi.​org/​10.​1109/​EMBC44109.​2020.​9175766
7.
Zurück zum Zitat Samuel, P., Jayashree K., Babu R., Vijay K.: Artificial intelligence, machine learning, and IoT architecture to support smart governance. In: Saini, K., Mummoorthy, A., Chandrika, R., Gowri Ganesh, N. (eds.) AI, IoT, and Blockchain Breakthroughs in E-Governance, pp. 95–113. IGI Global (2023). https://doi.org/10.4018/978-1-6684-7697-0.ch007 Samuel, P., Jayashree K., Babu R., Vijay K.: Artificial intelligence, machine learning, and IoT architecture to support smart governance. In: Saini, K., Mummoorthy, A., Chandrika, R., Gowri Ganesh, N. (eds.) AI, IoT, and Blockchain Breakthroughs in E-Governance, pp. 95–113. IGI Global (2023). https://​doi.​org/​10.​4018/​978-1-6684-7697-0.​ch007
10.
12.
Zurück zum Zitat Cao, Z., Simon, T., Wei, S.-E., Sheikh Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 1302–1310 (2017). https://doi.org/10.1109/CVPR.2017.143 Cao, Z., Simon, T., Wei, S.-E., Sheikh Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 1302–1310 (2017). https://​doi.​org/​10.​1109/​CVPR.​2017.​143
14.
Zurück zum Zitat Kotte, H., Kravcik, M., Duong-Trung, N.: Real-time Posture Correction in Gym Exercises: A Computer Vision-Based Approach for Performance Analysis, Error Classification and Feedback (2023) Kotte, H., Kravcik, M., Duong-Trung, N.: Real-time Posture Correction in Gym Exercises: A Computer Vision-Based Approach for Performance Analysis, Error Classification and Feedback (2023)
Metadaten
Titel
An Artificial Intelligence Approach to Quantifying Exercise Form for Optimal Performance and Injury Prevention
verfasst von
K. R. Sowmia
T. Jayaganeshan
F. Mohammed Abraar Khan
S. Madhesh
S. Kabilesh
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_50