Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

15.10.2018 | Original Paper | Ausgabe 6/2019 Open Access

Bulletin of Engineering Geology and the Environment 6/2019

An artificial neural network based model to predict spatial soil type distribution using piezocone penetration test data (CPTu)

Zeitschrift:
Bulletin of Engineering Geology and the Environment > Ausgabe 6/2019
Autoren:
Abdolvahed Ghaderi, Abbas Abbaszadeh Shahri, Stefan Larsson

Abstract

Soil types mapping and the spatial variation of soil classes are essential concerns in both geotechnical and geoenvironmental engineering. Because conventional soil mapping systems are time-consuming and costly, alternative quick and cheap but accurate methods need to be developed. In this paper, a new optimized multi-output generalized feed forward neural network (GFNN) structure using 58 piezocone penetration test points (CPTu) for producing a digital soil types map in the southwest of Sweden is developed. The introduced GFNN architecture is supported by a generalized shunting neuron (GSN) model computing unit to increase the capability of nonlinear boundaries of classified patterns. The comparison conducted between known soil type classification charts, CPTu interpreting procedures, and the outcomes of the GFNN model indicates acceptable accuracy in estimating complex soil types. The results show that the predictability of the GFNN system offers a valuable tool for the purpose of soil type pattern classifications and providing soil profiles.

Unsere Produktempfehlungen

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2019

Bulletin of Engineering Geology and the Environment 6/2019 Zur Ausgabe