Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.12.2009 | Ausgabe 4/2009

Fire Technology 4/2009

An Artificial Neural-network Based Predictive Model for Pre-evacuation Human Response in Domestic Building Fire

Zeitschrift:
Fire Technology > Ausgabe 4/2009
Autoren:
S. M. Lo, M. Liu, P. H. Zhang, Richard K. K. Yuen

Abstract

The post-1993 WTC attack study (Proulx and Fahy, In: Proceedings of ASIAFLAM’95—An International Conference on Fire Science and Engineering, Hong Kong, 1995, pp 199–210) revealed that occupants took 1–3 h to leave the 110-storey buildings, and the pre-movement reactions could account for over two-thirds of the overall evacuation time. This indicates that a thorough understanding of the pre-evacuation behavioral response of people under fire situations is of prime importance to fire safety design in buildings, especially for complex and ultra high-rise buildings. In view of the stochastic (the positions of the occupants) and fuzzy (uncertainty) nature of human behavior (Fraser-Mitchell, Fire Mater 23:349–355, 1999), conventional linear and polynomial predictive methods may not satisfactorily predict the people’s response. An alternative approach, Adaptive Network based Fuzzy Inference System (ANFIS), is proposed to predict the pre-evacuation behavior of peoples, which is an artificial neural network (ANN) based predictive model and integrates fuzzy logic (if-then rules) and neural network (based on back propagation learning procedures The ANFIS learning architecture can be trained by structured human behavioral data, and different fuzzy human decision rules. The applicability in simulating human behavior in fire is worth exploring.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2009

Fire Technology 4/2009Zur Ausgabe

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.