Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2018

09.10.2018

An Artificial Neural Network Model to Predict the Bainite Plate Thickness of Nanostructured Bainitic Steels Using an Efficient Network-Learning Algorithm

verfasst von: Minal Shah, Suchandan K. Das

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanostructured bainitic steel has an extraordinary ultrahigh strength of about 2.0 GPa along with good toughness of 30 MPa m1/2. The finer thickness of plate 20-80 nm is largely responsible for achieving such a large hardness of 690-720 HV. In this work, a multilayer perceptron-based artificial neural network (ANN) model has been developed to predict the thickness of bainite plate pertaining to nanostructured bainitic steels. The inputs of the ANN model are, namely, Gibbs free energy for bainitic transformation, austenite strength, transformation temperature for bainite and carbon concentration in the steel. The model prediction revealed that the bainite plate thickness critically depends on austenite strength and Gibbs free energy. From the neural prediction, it is concluded that formation of nanostructured bainitic steel is feasible only if sufficient austenite strength (above 165 MPa) has been achieved. This can be accomplished with a minimum carbon content of 0.5 wt.% in steel and transformation temperature below 300 °C. Higher driving force (Gibbs free energy) below − 1800 J/mol is another prerequisite condition of formation of nanostructured bainite steel. The network-learning architecture has been optimized using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm to minimize the network training error within eight training cycles. The algorithm facilitates a faster convergence of network training and testing errors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F.G. Caballero, H.K.D.H. Bhadeshia, J.A. Mazwella, D.G. Jones, and P. Brown, Very Strong Low Temperature Bainite, Mater. Sci. Technol., 2002, 18, p 279CrossRef F.G. Caballero, H.K.D.H. Bhadeshia, J.A. Mazwella, D.G. Jones, and P. Brown, Very Strong Low Temperature Bainite, Mater. Sci. Technol., 2002, 18, p 279CrossRef
2.
Zurück zum Zitat C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Development of Hard Bainite, ISIJ Int., 2003, 43, p 1238CrossRef C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Development of Hard Bainite, ISIJ Int., 2003, 43, p 1238CrossRef
3.
Zurück zum Zitat F.G. Caballero and H.K.D.H. Bhadeshia, Very Strong Bainite, Curr. Opin. Solid State Mater. Sci., 2004, 8, p 251CrossRef F.G. Caballero and H.K.D.H. Bhadeshia, Very Strong Bainite, Curr. Opin. Solid State Mater. Sci., 2004, 8, p 251CrossRef
4.
Zurück zum Zitat H.K.D.H. Bhadeshia, Nanostructured Bainite, R. Soc. A, 2010, 466, p 3–18CrossRef H.K.D.H. Bhadeshia, Nanostructured Bainite, R. Soc. A, 2010, 466, p 3–18CrossRef
5.
Zurück zum Zitat C. Garcia-Mateo, M. Peet, F.G. Caballero, and H.K.D.H. Bhadeshia, Tempering of Hard Mixture of Bainitic Ferrite and Austenite, Mater. Sci. Technol., 2004, 20, p 814–818CrossRef C. Garcia-Mateo, M. Peet, F.G. Caballero, and H.K.D.H. Bhadeshia, Tempering of Hard Mixture of Bainitic Ferrite and Austenite, Mater. Sci. Technol., 2004, 20, p 814–818CrossRef
6.
Zurück zum Zitat J. Daigne, M. Guttmann, and J.P. Naylor, The Influence of Lath Boundaries and Carbide Distribution on the Yield Strength of 0.4% C Tempered Martensitic Steels, Mater. Sci. Eng., 1982, 56, p 1–10CrossRef J. Daigne, M. Guttmann, and J.P. Naylor, The Influence of Lath Boundaries and Carbide Distribution on the Yield Strength of 0.4% C Tempered Martensitic Steels, Mater. Sci. Eng., 1982, 56, p 1–10CrossRef
7.
Zurück zum Zitat H.K.D.H. Bhadeshia, Bainite in Steels, Institute of Materials, London, 1992, p 19 H.K.D.H. Bhadeshia, Bainite in Steels, Institute of Materials, London, 1992, p 19
8.
Zurück zum Zitat G. Langford and M. Cohen, Calculation of Cell Size Strengthening of Wire-Drawn Iron, Met. Trans., 1970, 1, p 1478–1480CrossRef G. Langford and M. Cohen, Calculation of Cell Size Strengthening of Wire-Drawn Iron, Met. Trans., 1970, 1, p 1478–1480CrossRef
9.
Zurück zum Zitat G. Langford and M. Cohen, Strain Hardening of Iron by Severe Plastic Deformation, ASM Trans. Quart., 1969, 62, p 623–638 G. Langford and M. Cohen, Strain Hardening of Iron by Severe Plastic Deformation, ASM Trans. Quart., 1969, 62, p 623–638
10.
Zurück zum Zitat H.K.D.H. Bhadeshia, Bainite in Steels, Institute of Materials, London, 1992, p 1–458 H.K.D.H. Bhadeshia, Bainite in Steels, Institute of Materials, London, 1992, p 1–458
11.
Zurück zum Zitat E. Swallow and H.K.D.H. Bhadeshia, Bayesian Neural Network Model for Austenite Formation in Steels, Mater. Sci. Technol., 1996, 12, p 121–125CrossRef E. Swallow and H.K.D.H. Bhadeshia, Bayesian Neural Network Model for Austenite Formation in Steels, Mater. Sci. Technol., 1996, 12, p 121–125CrossRef
12.
Zurück zum Zitat C.H. Young and H.K.D.H. Bhadeshia, The Strength of Mixtures of Bainite and Martensite, Mater. Sci. Technol., 1994, 10, p 209–214CrossRef C.H. Young and H.K.D.H. Bhadeshia, The Strength of Mixtures of Bainite and Martensite, Mater. Sci. Technol., 1994, 10, p 209–214CrossRef
13.
Zurück zum Zitat S.B. Singh, H.K.D.H. Bhadeshia, D.J.C. MacKay, H. Carey, and I. Martin, Neural Network Analysis of Steel Plate Processing, Ironmak. Steelmak., 1998, 25, p 355–365 S.B. Singh, H.K.D.H. Bhadeshia, D.J.C. MacKay, H. Carey, and I. Martin, Neural Network Analysis of Steel Plate Processing, Ironmak. Steelmak., 1998, 25, p 355–365
14.
Zurück zum Zitat S.K. Das, Neural Network Modelling of Flow Stress and Mechanical Properties for Hot Strip Rolling of TRIP Steel Using an Efficient Learning Algorithm, Ironmak. Steelmak., 2013, 40, p 298–304CrossRef S.K. Das, Neural Network Modelling of Flow Stress and Mechanical Properties for Hot Strip Rolling of TRIP Steel Using an Efficient Learning Algorithm, Ironmak. Steelmak., 2013, 40, p 298–304CrossRef
15.
Zurück zum Zitat S. Hore, S.K. Das, S. Banerjee, and S. Mukherjee, An Adaptive Neuro-Fuzzy Inference System Based Modelling to Predict Mechanical Properties of Hot-Rolled TRIP Steel, Ironmak. Steelmak., 2017, 44, p 656–665CrossRef S. Hore, S.K. Das, S. Banerjee, and S. Mukherjee, An Adaptive Neuro-Fuzzy Inference System Based Modelling to Predict Mechanical Properties of Hot-Rolled TRIP Steel, Ironmak. Steelmak., 2017, 44, p 656–665CrossRef
16.
Zurück zum Zitat G. Khalaj, H. Pouraliakbar, N. Arab, and M. Nazerfakhari, Correlation of Passivation Current Density and Potential by Using Chemical Composition and Corrosion Cell Characteristics in HSLA Steels, Measurement, 2015, 75, p 5–11CrossRef G. Khalaj, H. Pouraliakbar, N. Arab, and M. Nazerfakhari, Correlation of Passivation Current Density and Potential by Using Chemical Composition and Corrosion Cell Characteristics in HSLA Steels, Measurement, 2015, 75, p 5–11CrossRef
17.
Zurück zum Zitat M.J. Faizabadi, G. Khalaj, H. Pouraliakbar, and M.R. Jandaghi, Predictions of Toughness and Hardness by using Chemical Composition and Tensile Properties in Microalloyed Line Pipe Steels, Neural Comput. Appl., 2014, 25, p 1993–1999CrossRef M.J. Faizabadi, G. Khalaj, H. Pouraliakbar, and M.R. Jandaghi, Predictions of Toughness and Hardness by using Chemical Composition and Tensile Properties in Microalloyed Line Pipe Steels, Neural Comput. Appl., 2014, 25, p 1993–1999CrossRef
18.
Zurück zum Zitat H. Pouraliakbar, M.-J. Khalaj, M. Nazerfakhari, and G. Khalaj, Artificial Neural Networks for Hardness Prediction of HAZ with Chemical Composition and Tensile Test of X70 Pipeline Steels, J. Iron. Steel Res. Int., 2015, 22(5), p 446–450CrossRef H. Pouraliakbar, M.-J. Khalaj, M. Nazerfakhari, and G. Khalaj, Artificial Neural Networks for Hardness Prediction of HAZ with Chemical Composition and Tensile Test of X70 Pipeline Steels, J. Iron. Steel Res. Int., 2015, 22(5), p 446–450CrossRef
19.
Zurück zum Zitat N. Narimani, B. Zarei, H. Pouraliakbar, and G. Khalaj, Predictions of Corrosion Current Density and Potential by Using Chemical Composition and Corrosion Cell Characteristics in Microalloyed Pipeline Steels, Measurement, 2015, 62, p 97–107CrossRef N. Narimani, B. Zarei, H. Pouraliakbar, and G. Khalaj, Predictions of Corrosion Current Density and Potential by Using Chemical Composition and Corrosion Cell Characteristics in Microalloyed Pipeline Steels, Measurement, 2015, 62, p 97–107CrossRef
20.
Zurück zum Zitat S.B. Singh and H.K.D.H. Bhadeshia, Estimation of Bainite Plate Thickness in Low-Alloy Steels, Mater. Sci. Eng. A, 1998, 245, p 72–79CrossRef S.B. Singh and H.K.D.H. Bhadeshia, Estimation of Bainite Plate Thickness in Low-Alloy Steels, Mater. Sci. Eng. A, 1998, 245, p 72–79CrossRef
21.
Zurück zum Zitat H.-S. Yang and H.K.D.H. Bhadeshia, Designing Low Carbon, Low Temperature Bainite, Mater. Sci. Technol., 2008, 24, p 335–342CrossRef H.-S. Yang and H.K.D.H. Bhadeshia, Designing Low Carbon, Low Temperature Bainite, Mater. Sci. Technol., 2008, 24, p 335–342CrossRef
22.
Zurück zum Zitat R. Callan, The Essence of Neural Networks, Prentice Hall Europe, London, 1999 R. Callan, The Essence of Neural Networks, Prentice Hall Europe, London, 1999
23.
Zurück zum Zitat R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A Limited Memory Algorithm for Bound Constrained Optimization, SIAM J. Sci. Comput., 1995, 16, p 1190–1208CrossRef R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A Limited Memory Algorithm for Bound Constrained Optimization, SIAM J. Sci. Comput., 1995, 16, p 1190–1208CrossRef
24.
Zurück zum Zitat A. Van Ooyen and B. Nienhuis, Improving the Convergence of the Back-Propagation Algorithm, Neural Netw., 1992, 5, p 465–471CrossRef A. Van Ooyen and B. Nienhuis, Improving the Convergence of the Back-Propagation Algorithm, Neural Netw., 1992, 5, p 465–471CrossRef
25.
Zurück zum Zitat H. Huang, M.Y. Sherif, and P.E.J. Rivera-Díaz-del-Castillo, Combinatorial Optimization of Carbide-Free Bainitic Nanostructures, Acta Mater., 2013, 61, p 1639–1647CrossRef H. Huang, M.Y. Sherif, and P.E.J. Rivera-Díaz-del-Castillo, Combinatorial Optimization of Carbide-Free Bainitic Nanostructures, Acta Mater., 2013, 61, p 1639–1647CrossRef
26.
Zurück zum Zitat C. Garcia-Mateo, F.G. Caballero, T. Sourmail, M. Kuntz, J. Cornide, V. Smanio, and R. Elvira, Tensile Behaviour of a Nanocrystalline Bainitic Steel Containing 3 wt.% Silicon, Mater. Sci. Eng. A, 2012, 549, p 185–192CrossRef C. Garcia-Mateo, F.G. Caballero, T. Sourmail, M. Kuntz, J. Cornide, V. Smanio, and R. Elvira, Tensile Behaviour of a Nanocrystalline Bainitic Steel Containing 3 wt.% Silicon, Mater. Sci. Eng. A, 2012, 549, p 185–192CrossRef
27.
Zurück zum Zitat F.G. Caballero, C. Garcia-Mateo, and H.K.D.H. Bhadeshia, Acceleration of Low-Temperature Bainite, ISIJ Int., 2003, 43, p 1821–1825CrossRef F.G. Caballero, C. Garcia-Mateo, and H.K.D.H. Bhadeshia, Acceleration of Low-Temperature Bainite, ISIJ Int., 2003, 43, p 1821–1825CrossRef
28.
Zurück zum Zitat M.A. Soliman, Phase Transformation and Mechanical Properties of New Austenite-Stabilised Bainite Steels, Ph.D. Dissertation, 2007 M.A. Soliman, Phase Transformation and Mechanical Properties of New Austenite-Stabilised Bainite Steels, Ph.D. Dissertation, 2007
29.
Zurück zum Zitat M. Soliman and H. Palkowski, Ultra-Fine Bainite Structure in Hypo-eutectoid Steels, ISIJ Int., 2007, 47, p 1703–1710CrossRef M. Soliman and H. Palkowski, Ultra-Fine Bainite Structure in Hypo-eutectoid Steels, ISIJ Int., 2007, 47, p 1703–1710CrossRef
30.
Zurück zum Zitat M. Soliman and H. Palkowski, Microstructure Development and Mechanical Properties of Medium Carbon Carbide-Free Bainite Steels, Procedia Eng., 2014, 81, p 1306–1311CrossRef M. Soliman and H. Palkowski, Microstructure Development and Mechanical Properties of Medium Carbon Carbide-Free Bainite Steels, Procedia Eng., 2014, 81, p 1306–1311CrossRef
31.
Zurück zum Zitat J. Yang, T.S. Wang, B. Zhang, and F.C. Zhang, Microstructure and Mechanical Properties of High-Carbon Si-Al-Rich Steel by Low Temperature Austempering, Mater. Des., 2012, 35, p 170–174CrossRef J. Yang, T.S. Wang, B. Zhang, and F.C. Zhang, Microstructure and Mechanical Properties of High-Carbon Si-Al-Rich Steel by Low Temperature Austempering, Mater. Des., 2012, 35, p 170–174CrossRef
32.
Zurück zum Zitat C. Garcia-Mateo and F.G. Caballero, The Role of Retained Austenite on Tensile Properties of Steels with Bainitic Microstructures, Mater. Trans., 2005, 46(8), p 1839–1846CrossRef C. Garcia-Mateo and F.G. Caballero, The Role of Retained Austenite on Tensile Properties of Steels with Bainitic Microstructures, Mater. Trans., 2005, 46(8), p 1839–1846CrossRef
33.
Zurück zum Zitat C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Mechanical Properties of Low-Temperature Bainite, Mater. Sci. Forum, 2005, 500–501, p 495–502CrossRef C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Mechanical Properties of Low-Temperature Bainite, Mater. Sci. Forum, 2005, 500–501, p 495–502CrossRef
34.
Zurück zum Zitat W. Solano-Alvarez, H.F.G. Abreub, M.R. da Silvac, and M.J. Peet, Phase Quantification in Nanobainite via Magnetic Measurements and X-Ray Diffraction, J. Magn. Magn. Mater., 2015, 378, p 200–205CrossRef W. Solano-Alvarez, H.F.G. Abreub, M.R. da Silvac, and M.J. Peet, Phase Quantification in Nanobainite via Magnetic Measurements and X-Ray Diffraction, J. Magn. Magn. Mater., 2015, 378, p 200–205CrossRef
35.
Zurück zum Zitat H.K.D.H. Bhadeshia, C. Garcia-Mateo, and P. Brown, Bainite Steel and Methods of Manufacture Thereof, US20110126946A1, 2011 H.K.D.H. Bhadeshia, C. Garcia-Mateo, and P. Brown, Bainite Steel and Methods of Manufacture Thereof, US20110126946A1, 2011
36.
Zurück zum Zitat T. Sourmail, F.G. Caballero, C. Garcia-Mateo, V. Smanio, C. Ziegler, M. Kuntz, R. Elvira, A. Leiro, E. Vuorinen, and T. Teeri, Evaluation of Potential of High Si High C Steel Nanostructured Bainite for Wear and Fatigue Applications, Mater. Sci. Technol., 2013, 29, p 10 T. Sourmail, F.G. Caballero, C. Garcia-Mateo, V. Smanio, C. Ziegler, M. Kuntz, R. Elvira, A. Leiro, E. Vuorinen, and T. Teeri, Evaluation of Potential of High Si High C Steel Nanostructured Bainite for Wear and Fatigue Applications, Mater. Sci. Technol., 2013, 29, p 10
37.
Zurück zum Zitat R. Rementeria, L. Morales-Rivas, M. Kuntz, C. Garcia-Mateo, E. Kerscher, T. Sourmail, and F.G. Caballero, On the Role of Microstructure in Governing the Fatigue Behaviour of Nanostructured Bainitic Steels, Mater. Sci. Eng. A, 2015, 630, p 71–77CrossRef R. Rementeria, L. Morales-Rivas, M. Kuntz, C. Garcia-Mateo, E. Kerscher, T. Sourmail, and F.G. Caballero, On the Role of Microstructure in Governing the Fatigue Behaviour of Nanostructured Bainitic Steels, Mater. Sci. Eng. A, 2015, 630, p 71–77CrossRef
38.
Zurück zum Zitat A. Leiro, E. Vuorinen, K.-G. Sundin, B. Prakash, T. Sourmail, V. Smanio, F.G. Caballero, C. Garcia-Mateo, and R. Elvira, Wear of Nano-Structured Carbide-Free Bainitic Steels Under Dry Rolling-Sliding Conditions, Wear, 2013, 298–299, p 42–47CrossRef A. Leiro, E. Vuorinen, K.-G. Sundin, B. Prakash, T. Sourmail, V. Smanio, F.G. Caballero, C. Garcia-Mateo, and R. Elvira, Wear of Nano-Structured Carbide-Free Bainitic Steels Under Dry Rolling-Sliding Conditions, Wear, 2013, 298–299, p 42–47CrossRef
39.
Zurück zum Zitat C. Garcia-Mateo, T. Sourmail, F.G. Caballero, V. Smanio, C. Ziegler, M. Kuntz, R. Elvira, A. Lerio, E. Vuorinen, and T. Teeri, Nanostructured Steel Industrialization: a Plausible, in CENIM reality, APM 2013 Conference Chair European RFCS, 2013 C. Garcia-Mateo, T. Sourmail, F.G. Caballero, V. Smanio, C. Ziegler, M. Kuntz, R. Elvira, A. Lerio, E. Vuorinen, and T. Teeri, Nanostructured Steel Industrialization: a Plausible, in CENIM reality, APM 2013 Conference Chair European RFCS, 2013
40.
Zurück zum Zitat M.N. Yoozbashi, S. Yazdani, and T.S. Wang, Design of a New Nanostructured, High-Si Bainitic Steel with Lower Cost Production, Mater. Des., 2011, 32, p 3248–3253CrossRef M.N. Yoozbashi, S. Yazdani, and T.S. Wang, Design of a New Nanostructured, High-Si Bainitic Steel with Lower Cost Production, Mater. Des., 2011, 32, p 3248–3253CrossRef
41.
Zurück zum Zitat H. Amel-Farzad, H.R. Faridi, F. Rajabpour, A. Abolhasani, S. Kazemi, and Y. Khaledzadeh, Developing Very Hard Nanostructured, Mater. Sci. Eng. A, 2013, 559, p 68–73CrossRef H. Amel-Farzad, H.R. Faridi, F. Rajabpour, A. Abolhasani, S. Kazemi, and Y. Khaledzadeh, Developing Very Hard Nanostructured, Mater. Sci. Eng. A, 2013, 559, p 68–73CrossRef
42.
Zurück zum Zitat Y.H. Wang, F.C. Zhang, and T.S. Wang, A Novel Bainitic Steel Comparable to Maraging Steel in Mechanical Properties, Scr. Mater., 2013, 68, p 763–766CrossRef Y.H. Wang, F.C. Zhang, and T.S. Wang, A Novel Bainitic Steel Comparable to Maraging Steel in Mechanical Properties, Scr. Mater., 2013, 68, p 763–766CrossRef
43.
Zurück zum Zitat L.C. Chang and H.K.D.H. Bhadeshia, Metallographic Observations of Bainite Transformation Mechanism, Mater. Sci. Technol., 1995, 11, p 105CrossRef L.C. Chang and H.K.D.H. Bhadeshia, Metallographic Observations of Bainite Transformation Mechanism, Mater. Sci. Technol., 1995, 11, p 105CrossRef
44.
Zurück zum Zitat L.C. Chang and H.K.D.H. Bhadeshia, Austenite Films in Bainitic Microstructures, Mater. Sci. Technol., 1995, 11, p 874–881CrossRef L.C. Chang and H.K.D.H. Bhadeshia, Austenite Films in Bainitic Microstructures, Mater. Sci. Technol., 1995, 11, p 874–881CrossRef
45.
Zurück zum Zitat L.C. Chang and H.K.D.H. Bhadeshia, Stress Affected Transformation to Lower Bainite, J. Mater. Sci., 1996, 31, p 2145–2148CrossRef L.C. Chang and H.K.D.H. Bhadeshia, Stress Affected Transformation to Lower Bainite, J. Mater. Sci., 1996, 31, p 2145–2148CrossRef
46.
Zurück zum Zitat H. Lan, L. Du, N. Zhou, and X. Liu, Effect of Austempering Route on Microstructural Characterization of Nanobainitic Steel, Acta Metall. Sin. (Engl. Lett.), 2014, 27(1), p 19–26CrossRef H. Lan, L. Du, N. Zhou, and X. Liu, Effect of Austempering Route on Microstructural Characterization of Nanobainitic Steel, Acta Metall. Sin. (Engl. Lett.), 2014, 27(1), p 19–26CrossRef
47.
Zurück zum Zitat L. Morales-Rivas, A. González-Orive, C. Garcia-Mateo, A. Hernández-Creus, F.G. Caballero, and L. Vázquez, Nanomechanical Characterization of Nanostructured Bainitic Steel: Peak Force Microscopy and Nanoindentation with AFM, Sci. Rep., 2015, 5, p 1–6CrossRef L. Morales-Rivas, A. González-Orive, C. Garcia-Mateo, A. Hernández-Creus, F.G. Caballero, and L. Vázquez, Nanomechanical Characterization of Nanostructured Bainitic Steel: Peak Force Microscopy and Nanoindentation with AFM, Sci. Rep., 2015, 5, p 1–6CrossRef
48.
Zurück zum Zitat X.Y. Long, J. Kang, B. Lv, and F.C. Zhang, Carbide-Free Bainite in Medium Carbon Steel, Mater. Des., 2014, 64, p 237–245CrossRef X.Y. Long, J. Kang, B. Lv, and F.C. Zhang, Carbide-Free Bainite in Medium Carbon Steel, Mater. Des., 2014, 64, p 237–245CrossRef
49.
Zurück zum Zitat S. Das Bakshi, P.H. Shipway, and H.K.D.H. Bhadeshia, Three-Body Abrasive Wear of Fine Pearlite, Nanostructured Bainite and Martensite, Wear, 2013, 308(1–2), p 46–53CrossRef S. Das Bakshi, P.H. Shipway, and H.K.D.H. Bhadeshia, Three-Body Abrasive Wear of Fine Pearlite, Nanostructured Bainite and Martensite, Wear, 2013, 308(1–2), p 46–53CrossRef
50.
Zurück zum Zitat F.G. Caballero, C. Garcia-Mateo, and M.K. Miller, Design of Novel Bainitic Steels: Moving from Ultra Fine to Nanoscale Structures, JOM, 2014, 66(5), p 747–755CrossRef F.G. Caballero, C. Garcia-Mateo, and M.K. Miller, Design of Novel Bainitic Steels: Moving from Ultra Fine to Nanoscale Structures, JOM, 2014, 66(5), p 747–755CrossRef
51.
Zurück zum Zitat W. Solano-Alvarez, E.J. Pickering, and H.K.D.H. Bhadeshia, Degradation of Nanostructured Bainitic Steel Under Rolling Contact Fatigue, Mater. Sci. Eng. A, 2014, 617, p 156–164CrossRef W. Solano-Alvarez, E.J. Pickering, and H.K.D.H. Bhadeshia, Degradation of Nanostructured Bainitic Steel Under Rolling Contact Fatigue, Mater. Sci. Eng. A, 2014, 617, p 156–164CrossRef
52.
Zurück zum Zitat H.S. Hasan, M.J. Peet, M.-N. Avettand-Fènoël, and H.K.D.H. Bhadeshia, Effect of Tempering upon The Tensile Properties of a Nanostructured Bainitic Steel, Mater. Sci. Eng. A, 2014, 615, p 340–347CrossRef H.S. Hasan, M.J. Peet, M.-N. Avettand-Fènoël, and H.K.D.H. Bhadeshia, Effect of Tempering upon The Tensile Properties of a Nanostructured Bainitic Steel, Mater. Sci. Eng. A, 2014, 615, p 340–347CrossRef
54.
Zurück zum Zitat C.N. Hulme-Smith, I. Lonardelli, M.J. Peet, A.C. Dippel, and H.K.D.H. Bhadeshia, Enhanced Thermal Stability in Nanostructured Bainitic Steel, Scr. Mater., 2013, 69(2), p 191–194CrossRef C.N. Hulme-Smith, I. Lonardelli, M.J. Peet, A.C. Dippel, and H.K.D.H. Bhadeshia, Enhanced Thermal Stability in Nanostructured Bainitic Steel, Scr. Mater., 2013, 69(2), p 191–194CrossRef
55.
Zurück zum Zitat F. Hu, P.D. Hodgson, and K.M. Wu, Acceleration of the Superbainite Transformation Through a Coarse Austenite Grain Size, Mater. Lett., 2014, 122, p 240–243CrossRef F. Hu, P.D. Hodgson, and K.M. Wu, Acceleration of the Superbainite Transformation Through a Coarse Austenite Grain Size, Mater. Lett., 2014, 122, p 240–243CrossRef
56.
Zurück zum Zitat M. Kundu, S. Datta, S. Curtze, V.-T. Kuokkala, and P.P. Chattopadhyay, Advanced High Strength Steel, Springer, India, 2018, p 87–94CrossRef M. Kundu, S. Datta, S. Curtze, V.-T. Kuokkala, and P.P. Chattopadhyay, Advanced High Strength Steel, Springer, India, 2018, p 87–94CrossRef
57.
Zurück zum Zitat J. He, A. Zhao, and C. Zhi, Hongliang Fan Acceleration of Nanobainite Transformation by Multi-step Ausforming Process, Scri. Mater., 2015, 107, p 71–74CrossRef J. He, A. Zhao, and C. Zhi, Hongliang Fan Acceleration of Nanobainite Transformation by Multi-step Ausforming Process, Scri. Mater., 2015, 107, p 71–74CrossRef
58.
Zurück zum Zitat J. Zhao, X. Jia, K. Guo, N.N. Jia, Y.F. Wang, Y.H. Wang, and T.S. Wang, Transformation Behavior and Microstructure Feature of Large Strain Ausformed Low-Temperature Bainite in a Medium C-Si Rich Alloy Steel, Mater. Sci. Eng. A, 2017, 682, p 527–534CrossRef J. Zhao, X. Jia, K. Guo, N.N. Jia, Y.F. Wang, Y.H. Wang, and T.S. Wang, Transformation Behavior and Microstructure Feature of Large Strain Ausformed Low-Temperature Bainite in a Medium C-Si Rich Alloy Steel, Mater. Sci. Eng. A, 2017, 682, p 527–534CrossRef
59.
Zurück zum Zitat H.-S. Yang, Design of Low-Carbon, Low-Temperature Bainite, Ph.D. thesis. H.-S. Yang, Design of Low-Carbon, Low-Temperature Bainite, Ph.D. thesis.
60.
Zurück zum Zitat H. Feng, W. Kai-Ming, and H. Zheng, Influence of Co and Al on Bainitic Transformation in Super Bainitic Steels, Steel Res. Int., 2013, 84, p 1–6CrossRef H. Feng, W. Kai-Ming, and H. Zheng, Influence of Co and Al on Bainitic Transformation in Super Bainitic Steels, Steel Res. Int., 2013, 84, p 1–6CrossRef
61.
Zurück zum Zitat C. Garcia-Mateo, F.G. Caballero, T. Sourmail, and V. Smanio, Industrialised Nanocrystalline Bainitic Steels—Design Approach, Int. J. Mater. Res., 2014, 105(8), p 725–734CrossRef C. Garcia-Mateo, F.G. Caballero, T. Sourmail, and V. Smanio, Industrialised Nanocrystalline Bainitic Steels—Design Approach, Int. J. Mater. Res., 2014, 105(8), p 725–734CrossRef
62.
Zurück zum Zitat S.A. Miab, B. Avishan, and S. Yazdani, Wear Resistance of Two Nanostructural Bainitic Steels with Different Amounts of Mn and Ni, Acta Metall. Sin. (Engl. Lett.), 2016, 29(6), p 587–594CrossRef S.A. Miab, B. Avishan, and S. Yazdani, Wear Resistance of Two Nanostructural Bainitic Steels with Different Amounts of Mn and Ni, Acta Metall. Sin. (Engl. Lett.), 2016, 29(6), p 587–594CrossRef
63.
Zurück zum Zitat M.N. Yoozbashi and S. Yazdani, Mechanical Properties of Nanostructured, Low Temperature Bainitic Steel Designed Using a Thermodynamic Model, Mater. Sci. Eng. A, 2010, 527, p 3200–3205CrossRef M.N. Yoozbashi and S. Yazdani, Mechanical Properties of Nanostructured, Low Temperature Bainitic Steel Designed Using a Thermodynamic Model, Mater. Sci. Eng. A, 2010, 527, p 3200–3205CrossRef
64.
Zurück zum Zitat M. Peet and H.K.D.H. Bhadeshia, MUCG 83. Mater. Algorithms Proj. 2011. M. Peet and H.K.D.H. Bhadeshia, MUCG 83. Mater. Algorithms Proj. 2011.
65.
Zurück zum Zitat H.K.D.H. Bhadeshia, Bainite in Steel, IOM communications Ltd, London, 2001, p 134 H.K.D.H. Bhadeshia, Bainite in Steel, IOM communications Ltd, London, 2001, p 134
66.
Zurück zum Zitat H.K.D.H. Bhadeshia, Bainite in Steels, Institute of Materials, London, 1992, p 131–133 H.K.D.H. Bhadeshia, Bainite in Steels, Institute of Materials, London, 1992, p 131–133
67.
Zurück zum Zitat H.N. Mhaskar and C.A. Micchelli, Approximation by Superposition of a Sigmoidal Function and Radial Basis Functions, Adv. Appl. Math., 1992, 13, p 350–373CrossRef H.N. Mhaskar and C.A. Micchelli, Approximation by Superposition of a Sigmoidal Function and Radial Basis Functions, Adv. Appl. Math., 1992, 13, p 350–373CrossRef
68.
Zurück zum Zitat H. Pouraliakbar, S. Firooz, M.R. Jandaghi, G. Khalaj, and A. Nazari, Predicting the Ultimate Grain Size of Aluminum Sheets Undergone Constrained Groove Pressing, Int. J. Adv. Manuf. Technol., 2016, 86, p 1639–1658CrossRef H. Pouraliakbar, S. Firooz, M.R. Jandaghi, G. Khalaj, and A. Nazari, Predicting the Ultimate Grain Size of Aluminum Sheets Undergone Constrained Groove Pressing, Int. J. Adv. Manuf. Technol., 2016, 86, p 1639–1658CrossRef
69.
Zurück zum Zitat C. Garcia-Mateo and H.K.D.H. Bhadeshia, Nucleation Theory for High-Carbon Bainite, Mater. Sci. Eng. A, 2004, 378, p 289–292CrossRef C. Garcia-Mateo and H.K.D.H. Bhadeshia, Nucleation Theory for High-Carbon Bainite, Mater. Sci. Eng. A, 2004, 378, p 289–292CrossRef
Metadaten
Titel
An Artificial Neural Network Model to Predict the Bainite Plate Thickness of Nanostructured Bainitic Steels Using an Efficient Network-Learning Algorithm
verfasst von
Minal Shah
Suchandan K. Das
Publikationsdatum
09.10.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3696-9

Weitere Artikel der Ausgabe 11/2018

Journal of Materials Engineering and Performance 11/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.