Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.09.2013 | Article | Ausgabe 3/2013 Open Access

International Journal of Concrete Structures and Materials 3/2013

An Artificial Neural Networks Model for Predicting Permeability Properties of Nano Silica–Rice Husk Ash Ternary Blended Concrete

Zeitschrift:
International Journal of Concrete Structures and Materials > Ausgabe 3/2013
Autoren:
Alireza Najigivi, Alireza Khaloo, Azam Iraji zad, Suraya Abdul Rashid

Abstract

In this study, a two-layer feed-forward neural network was constructed and applied to determine a mapping associating mix design and testing factors of cement–nano silica (NS)–rice husk ash ternary blended concrete samples with their performance in conductance to the water absorption properties. To generate data for the neural network model (NNM), a total of 174 field cores from 58 different mixes at three ages were tested in the laboratory for each of percentage, velocity and coefficient of water absorption and mix volumetric properties. The significant factors (six items) that affect the permeability properties of ternary blended concrete were identified by experimental studies which were: (1) percentage of cement; (2) content of rice husk ash; (3) percentage of 15 nm of SiO2 particles; (4) content of NS particles with average size of 80 nm; (5) effect of curing medium and (6) curing time. The mentioned significant factors were then used to define the domain of a neural network which was trained based on the Levenberg–Marquardt back propagation algorithm using Matlab software. Excellent agreement was observed between simulation and laboratory data. It is believed that the novel developed NNM with three outputs will be a useful tool in the study of the permeability properties of ternary blended concrete and its maintenance.

Unsere Produktempfehlungen

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2013

International Journal of Concrete Structures and Materials 3/2013 Zur Ausgabe