Skip to main content
Erschienen in: Acta Mechanica 10/2020

01.08.2020 | Original Paper

An atomistic-based finite element progressive fracture model for silicene nanosheets

verfasst von: S. Nickabadi, R. Ansari, S. Rouhi

Erschienen in: Acta Mechanica | Ausgabe 10/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A progressive finite element method is proposed herein to investigate the fracture of silicene nanosheets. By treating a silicene nanosheet as a buckled frame structure, its mechanical behavior is simulated using the modified Morse potential function. The interatomic force per atom is calculated for all atoms as a set of inharmonic oscillator networks, which are described by the modified Morse potential function, while the nonlinear behavior is defined by these interatomic forces with an iterative solution procedure as strain increases. The nonlinear stress–strain relationships of the armchair and zigzag silicene nanosheets are also obtained for pristine and defective cases including the tensile strength and ultimate strain. For the silicene with both configurations, i.e., armchair and zigzag, a sudden drop is seen in the stress–strain diagram, showing that both of them represent the brittle behavior. Moreover, it is concluded that the tensile strength and ultimate strain of the armchair silicenes are slightly larger than those of the zigzag one. It is also seen that the mechanical properties of the silicene are significantly affected by the single-vacancy and Stone–Wales defects. The computed results reveal that single-vacancy defects can reduce the ultimate strain of silicene by approximately 7.3% with respect to that of pristine silicene, whereas the effect of Stone–Wales defects is less significant.
Literatur
1.
Zurück zum Zitat Jose, D., Datta, A.: Structures and chemical properties of silicene: unlike graphene. Acc. Chem. Res. 47, 593–602 (2013) Jose, D., Datta, A.: Structures and chemical properties of silicene: unlike graphene. Acc. Chem. Res. 47, 593–602 (2013)
2.
Zurück zum Zitat Xu, M., Liang, T., Shi, M., Chen, H.: Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013) Xu, M., Liang, T., Shi, M., Chen, H.: Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013)
3.
Zurück zum Zitat Grazianetti, C., Cinquanta, E., Molle, A.: Two-dimensional silicon: the advent of silicene. 2D Mater. 3, 012001 (2016) Grazianetti, C., Cinquanta, E., Molle, A.: Two-dimensional silicon: the advent of silicene. 2D Mater. 3, 012001 (2016)
4.
Zurück zum Zitat Şahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R.T., Ciraci, S.: Monolayer honeycomb structures of group-IV elements and III–V binary compounds: first-principles calculations. Phys. Rev. B 80, 155453 (2009) Şahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R.T., Ciraci, S.: Monolayer honeycomb structures of group-IV elements and III–V binary compounds: first-principles calculations. Phys. Rev. B 80, 155453 (2009)
5.
Zurück zum Zitat Li, X., Wu, S., Zhou, S., Zhu, Z.: Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices. Nanoscale Res. Lett. 9, 110 (2014) Li, X., Wu, S., Zhou, S., Zhu, Z.: Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices. Nanoscale Res. Lett. 9, 110 (2014)
6.
Zurück zum Zitat Pizzochero, M., Bonfanti, M., Martinazzo, R.: Hydrogen on silicene: like or unlike graphene? Phys. Chem. Chem. Phys. 18, 15654–15666 (2016) Pizzochero, M., Bonfanti, M., Martinazzo, R.: Hydrogen on silicene: like or unlike graphene? Phys. Chem. Chem. Phys. 18, 15654–15666 (2016)
7.
Zurück zum Zitat Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., Le Lay, G.: Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012) Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., Le Lay, G.: Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012)
8.
Zurück zum Zitat Chiappe, D., Grazianetti, C., Tallarida, G., Fanciulli, M., Molle, A.: Local electronic properties of corrugated silicene phases. Adv. Mater. 24, 5088–5093 (2012) Chiappe, D., Grazianetti, C., Tallarida, G., Fanciulli, M., Molle, A.: Local electronic properties of corrugated silicene phases. Adv. Mater. 24, 5088–5093 (2012)
9.
Zurück zum Zitat Feng, B., Ding, Z., Meng, S., Yao, Y., He, X., Cheng, P., Chen, L., Wu, K.: Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett. 12, 3507–3511 (2012) Feng, B., Ding, Z., Meng, S., Yao, Y., He, X., Cheng, P., Chen, L., Wu, K.: Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett. 12, 3507–3511 (2012)
10.
Zurück zum Zitat Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y., Yamada-Takamura, Y.: Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 245501 (2012) Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y., Yamada-Takamura, Y.: Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 245501 (2012)
11.
Zurück zum Zitat Gao, J., Zhao, J.: Initial geometries, interaction mechanism and high stability of silicene on Ag (111) surface. Sci. Rep. 2, 861 (2012) Gao, J., Zhao, J.: Initial geometries, interaction mechanism and high stability of silicene on Ag (111) surface. Sci. Rep. 2, 861 (2012)
12.
Zurück zum Zitat Meng, L., Wang, Y., Zhang, L., Du, S., Wu, R., Li, L., Zhang, Y., Li, G., Zhou, H., Hofer, W.A.: Buckled silicene formation on Ir (111). Nano Lett. 13, 685–690 (2013) Meng, L., Wang, Y., Zhang, L., Du, S., Wu, R., Li, L., Zhang, Y., Li, G., Zhou, H., Hofer, W.A.: Buckled silicene formation on Ir (111). Nano Lett. 13, 685–690 (2013)
13.
Zurück zum Zitat Drummond, N.D., Zólyomi, V., Fal’ko, V.I.: Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423 (2012) Drummond, N.D., Zólyomi, V., Fal’ko, V.I.: Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423 (2012)
14.
Zurück zum Zitat Tritsaris, G.A., Kaxiras, E., Meng, S., Wang, E.: Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Lett. 13, 2258–2263 (2013) Tritsaris, G.A., Kaxiras, E., Meng, S., Wang, E.: Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Lett. 13, 2258–2263 (2013)
15.
Zurück zum Zitat Feng, J.-W., Liu, Y.-J., Wang, H.-X., Zhao, J.-X., Cai, Q.-H., Wang, X.-Z.: Gas adsorption on silicene: a theoretical study. Comput. Mater. Sci. 87, 218–226 (2014) Feng, J.-W., Liu, Y.-J., Wang, H.-X., Zhao, J.-X., Cai, Q.-H., Wang, X.-Z.: Gas adsorption on silicene: a theoretical study. Comput. Mater. Sci. 87, 218–226 (2014)
16.
Zurück zum Zitat Yang, K., Cahangirov, S., Cantarero, A., Rubio, A., D’Agosta, R.: Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys. Rev. B 89, 125403 (2014) Yang, K., Cahangirov, S., Cantarero, A., Rubio, A., D’Agosta, R.: Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys. Rev. B 89, 125403 (2014)
17.
Zurück zum Zitat Pei, Q.-X., Sha, Z.-D., Zhang, Y.-Y., Zhang, Y.-W.: Effects of temperature and strain rate on the mechanical properties of silicene. J. Appl. Phys. 115, 023519 (2014) Pei, Q.-X., Sha, Z.-D., Zhang, Y.-Y., Zhang, Y.-W.: Effects of temperature and strain rate on the mechanical properties of silicene. J. Appl. Phys. 115, 023519 (2014)
18.
Zurück zum Zitat Ding, N., Wang, H., Chen, X., Wu, C.-M.L.: Defect-sensitive performance of silicene sheets under uniaxial tension: mechanical properties, electronic structures and failure behavior. RSC Adv. 7, 10306–10315 (2017) Ding, N., Wang, H., Chen, X., Wu, C.-M.L.: Defect-sensitive performance of silicene sheets under uniaxial tension: mechanical properties, electronic structures and failure behavior. RSC Adv. 7, 10306–10315 (2017)
19.
Zurück zum Zitat Roman, R.E., Cranford, S.W.: Mechanical properties of silicene. Comput. Mater. Sci. 82, 50–55 (2014) Roman, R.E., Cranford, S.W.: Mechanical properties of silicene. Comput. Mater. Sci. 82, 50–55 (2014)
20.
Zurück zum Zitat Zhao, H.: Strain and chirality effects on the mechanical and electronic properties of silicene and silicane under uniaxial tension. Phys. Lett. A 376, 3546–3550 (2012) Zhao, H.: Strain and chirality effects on the mechanical and electronic properties of silicene and silicane under uniaxial tension. Phys. Lett. A 376, 3546–3550 (2012)
21.
Zurück zum Zitat Mortazavi, B., Rahaman, O., Makaremi, M., Dianat, A., Cuniberti, G., Rabczuk, T.: First-principles investigation of mechanical properties of silicene, germanene and stanene. Phys. E 87, 228–232 (2017) Mortazavi, B., Rahaman, O., Makaremi, M., Dianat, A., Cuniberti, G., Rabczuk, T.: First-principles investigation of mechanical properties of silicene, germanene and stanene. Phys. E 87, 228–232 (2017)
22.
Zurück zum Zitat Alian, A., Meguid, S., Kundalwal, S.: Unraveling the influence of grain boundaries on the mechanical properties of polycrystalline carbon nanotubes. Carbon 125, 180–188 (2017) Alian, A., Meguid, S., Kundalwal, S.: Unraveling the influence of grain boundaries on the mechanical properties of polycrystalline carbon nanotubes. Carbon 125, 180–188 (2017)
23.
Zurück zum Zitat Kundalwal, S., Meguid, S., Weng, G.: Strain gradient polarization in graphene. Carbon 117, 462–472 (2017) Kundalwal, S., Meguid, S., Weng, G.: Strain gradient polarization in graphene. Carbon 117, 462–472 (2017)
24.
Zurück zum Zitat Belytschko, T., Xiao, S., Schatz, G.C., Ruoff, R.: Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235430 (2002) Belytschko, T., Xiao, S., Schatz, G.C., Ruoff, R.: Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235430 (2002)
25.
Zurück zum Zitat Xiao, J., Staniszewski, J., Gillespie Jr., J.: Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Compos. Struct. 88, 602–609 (2009) Xiao, J., Staniszewski, J., Gillespie Jr., J.: Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Compos. Struct. 88, 602–609 (2009)
26.
Zurück zum Zitat Tserpes, K.I.: Strength of graphenes containing randomly dispersed vacancies. Acta Mech. 223, 669–678 (2012)MATH Tserpes, K.I.: Strength of graphenes containing randomly dispersed vacancies. Acta Mech. 223, 669–678 (2012)MATH
27.
Zurück zum Zitat Fan, N., Ren, Z., Jing, G., Guo, J., Peng, B., Jiang, H.: Numerical investigation of the fracture mechanism of defective graphene sheets. Materials 10, 164 (2017) Fan, N., Ren, Z., Jing, G., Guo, J., Peng, B., Jiang, H.: Numerical investigation of the fracture mechanism of defective graphene sheets. Materials 10, 164 (2017)
28.
Zurück zum Zitat Wernik, J.M., Meguid, S.A.: Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes. Acta Mech. 212, 167–179 (2010)MATH Wernik, J.M., Meguid, S.A.: Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes. Acta Mech. 212, 167–179 (2010)MATH
29.
Zurück zum Zitat Baykasoglu, C., Mugan, A.: Nonlinear fracture analysis of single-layer graphene sheets. Eng. Fract. Mech. 96, 241–250 (2012) Baykasoglu, C., Mugan, A.: Nonlinear fracture analysis of single-layer graphene sheets. Eng. Fract. Mech. 96, 241–250 (2012)
30.
Zurück zum Zitat Baykasoglu, C., Mugan, A.: Coupled molecular/continuum mechanical modeling of graphene sheets. Phys. E 45, 151–161 (2012) Baykasoglu, C., Mugan, A.: Coupled molecular/continuum mechanical modeling of graphene sheets. Phys. E 45, 151–161 (2012)
31.
Zurück zum Zitat Baykasoglu, C., Kirca, M., Mugan, A.: Nonlinear failure analysis of carbon nanotubes by using molecular-mechanics based models. Compos. B Eng. 50, 150–157 (2013) Baykasoglu, C., Kirca, M., Mugan, A.: Nonlinear failure analysis of carbon nanotubes by using molecular-mechanics based models. Compos. B Eng. 50, 150–157 (2013)
32.
Zurück zum Zitat Baykasoglu, C., Mugan, A.: Failure analysis of graphene sheets with multiple Stone–Thrower–Wales defects using molecular mechanics based nonlinear finite element models. Hittite J. Sci. Eng. 5(1), 19–24 (2018) Baykasoglu, C., Mugan, A.: Failure analysis of graphene sheets with multiple Stone–Thrower–Wales defects using molecular mechanics based nonlinear finite element models. Hittite J. Sci. Eng. 5(1), 19–24 (2018)
33.
Zurück zum Zitat Mohammadpour, E., Awang, M.: Nonlinear finite-element modeling of graphene and single-and multi-walled carbon nanotubes under axial tension. Appl. Phys. A 106, 581–588 (2012) Mohammadpour, E., Awang, M.: Nonlinear finite-element modeling of graphene and single-and multi-walled carbon nanotubes under axial tension. Appl. Phys. A 106, 581–588 (2012)
34.
Zurück zum Zitat Mohammadpour, E., Awang, M.: A finite element model to investigate the stress–strain behavior of single walled carbon nanotube. In: Öchsner, A., da Silva, L.F.M., Altenbach, H. (eds.) Materials with Complex Behaviour II, pp. 369–381. Springer, Berlin (2012) Mohammadpour, E., Awang, M.: A finite element model to investigate the stress–strain behavior of single walled carbon nanotube. In: Öchsner, A., da Silva, L.F.M., Altenbach, H. (eds.) Materials with Complex Behaviour II, pp. 369–381. Springer, Berlin (2012)
35.
Zurück zum Zitat Tserpes, K., Papanikos, P., Tsirkas, S.: A progressive fracture model for carbon nanotubes. Compos. B Eng. 37, 662–669 (2006) Tserpes, K., Papanikos, P., Tsirkas, S.: A progressive fracture model for carbon nanotubes. Compos. B Eng. 37, 662–669 (2006)
36.
Zurück zum Zitat Tserpes, K., Papanikos, P.: The effect of Stone–Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes. Compos. Struct. 79, 581–589 (2007) Tserpes, K., Papanikos, P.: The effect of Stone–Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes. Compos. Struct. 79, 581–589 (2007)
37.
Zurück zum Zitat Tserpes, K.I., Papanikos, P.: Finite element modeling of the tensile behavior of carbon nanotubes, graphene and their composites. In: Tserpes, K.I., Silvestre, N. (eds.) Modeling of Carbon Nanotubes, Graphene and their Composites, pp. 303–329. Springer, Berlin (2014) Tserpes, K.I., Papanikos, P.: Finite element modeling of the tensile behavior of carbon nanotubes, graphene and their composites. In: Tserpes, K.I., Silvestre, N. (eds.) Modeling of Carbon Nanotubes, Graphene and their Composites, pp. 303–329. Springer, Berlin (2014)
38.
Zurück zum Zitat Nickabadi, S., Ansari, R., Rouhi, S.: Evaluation of the Morse potential function coefficients for germanene by the first principles approach. J. Mol. Graph. Model. 98, 107589 (2020) Nickabadi, S., Ansari, R., Rouhi, S.: Evaluation of the Morse potential function coefficients for germanene by the first principles approach. J. Mol. Graph. Model. 98, 107589 (2020)
39.
Zurück zum Zitat Hu, M., Zhang, X., Poulikakos, D.: Anomalous thermal response of silicene to uniaxial stretching. Phys. Rev. B 87, 195417 (2013) Hu, M., Zhang, X., Poulikakos, D.: Anomalous thermal response of silicene to uniaxial stretching. Phys. Rev. B 87, 195417 (2013)
40.
Zurück zum Zitat Zhang, X., Xie, H., Hu, M., Bao, H., Yue, S., Qin, G., Su, G.: Thermal conductivity of silicene calculated using an optimized Stillinger–Weber potential. Phys. Rev. B 89, 054310 (2014) Zhang, X., Xie, H., Hu, M., Bao, H., Yue, S., Qin, G., Su, G.: Thermal conductivity of silicene calculated using an optimized Stillinger–Weber potential. Phys. Rev. B 89, 054310 (2014)
41.
Zurück zum Zitat Rouhi, S., Ansari, R., Nickabadi, S.: Modal analysis of double-walled carbon nanocones using the finite element method. Int. J. Mod. Phys. B 31, 1750262 (2017) Rouhi, S., Ansari, R., Nickabadi, S.: Modal analysis of double-walled carbon nanocones using the finite element method. Int. J. Mod. Phys. B 31, 1750262 (2017)
42.
Zurück zum Zitat Ansari, R., Motevalli, B., Montazeri, A., Ajori, S.: Fracture analysis of monolayer graphene sheets with double vacancy defects via MD simulation. Solid State Commun. 151, 1141–1146 (2011) Ansari, R., Motevalli, B., Montazeri, A., Ajori, S.: Fracture analysis of monolayer graphene sheets with double vacancy defects via MD simulation. Solid State Commun. 151, 1141–1146 (2011)
43.
Zurück zum Zitat Rakib, T., Mojumder, S., Das, S., Saha, S., Motalab, M.: Graphene and its elemental analogue: a molecular dynamics view of fracture phenomenon. Phys. B 515, 67–74 (2017) Rakib, T., Mojumder, S., Das, S., Saha, S., Motalab, M.: Graphene and its elemental analogue: a molecular dynamics view of fracture phenomenon. Phys. B 515, 67–74 (2017)
44.
Zurück zum Zitat Rouhi, S.: Fracture behavior of hydrogen-functionalized silicene nanosheets by molecular dynamics simulations. Comput. Mater. Sci. 131, 275–285 (2017) Rouhi, S.: Fracture behavior of hydrogen-functionalized silicene nanosheets by molecular dynamics simulations. Comput. Mater. Sci. 131, 275–285 (2017)
45.
Zurück zum Zitat Jing, Y., Sun, Y., Niu, H., Shen, J.: Atomistic simulations on the mechanical properties of silicene nanoribbons under uniaxial tension. Phys. Status Solidi (b) 250, 1505–1509 (2013) Jing, Y., Sun, Y., Niu, H., Shen, J.: Atomistic simulations on the mechanical properties of silicene nanoribbons under uniaxial tension. Phys. Status Solidi (b) 250, 1505–1509 (2013)
46.
Zurück zum Zitat Li, C., Chou, T.-W.: Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach. Mech. Mater. 36, 1047–1055 (2004) Li, C., Chou, T.-W.: Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach. Mech. Mater. 36, 1047–1055 (2004)
47.
Zurück zum Zitat Trivedi, S., Srivastava, A., Kurchania, R.: Silicene and Germanene: a first principle study of electronic structure and effect of hydrogenation–passivation. J. Comput. Theor. Nanosci. 11, 781–788 (2014) Trivedi, S., Srivastava, A., Kurchania, R.: Silicene and Germanene: a first principle study of electronic structure and effect of hydrogenation–passivation. J. Comput. Theor. Nanosci. 11, 781–788 (2014)
48.
Zurück zum Zitat Nickabadi, S., Ansari, R., Rouhi, S.: On the derivation of the coefficient of Morse Potential function for the silicene: a DFT investigation J. Mol. Graph. Model. 98, 107589 (2020) Nickabadi, S., Ansari, R., Rouhi, S.: On the derivation of the coefficient of Morse Potential function for the silicene: a DFT investigation J. Mol. Graph. Model. 98, 107589 (2020)
Metadaten
Titel
An atomistic-based finite element progressive fracture model for silicene nanosheets
verfasst von
S. Nickabadi
R. Ansari
S. Rouhi
Publikationsdatum
01.08.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 10/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02757-w

Weitere Artikel der Ausgabe 10/2020

Acta Mechanica 10/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.