Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 6/2022

01.06.2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

An Atomistic Simulation of Special Tilt Boundaries in α-Ti: Structure, Energy, Point Defects, and Grain-Boundary Self-Diffusion

verfasst von: M. G. Urazaliev, M. E. Stupak, V. V. Popov

Erschienen in: Physics of Metals and Metallography | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In hexagonal close-packed titanium, the symmetric tilt boundaries \([2\bar {1}\bar {1}0](01\bar {1}3)\) and \([2\bar {1}\bar {1}0](02\bar {2}1)\) have been studied by computer simulation using an embedded atom potential. The structure and energy of the boundaries under consideration have been calculated by method of molecular statics. The stability of the boundaries and grain-boundary self-diffusion coefficients have been calculated by molecular dynamics upon heating. It has been shown that the \([2\bar {1}\bar {1}0](01\bar {1}3)\) boundary is stable up to the hcp → bcc phase transformation temperature (1155 K), and the \([2\bar {1}\bar {1}0](02\bar {2}1)\) boundary, up to 900 K. It has been shown that the grain-boundary diffusion coefficients are close to experimental ones.
Literatur
1.
Zurück zum Zitat A. Suzuki and Y. Mishin, “Atomistic modeling of point defects and diffusion in copper grain boundaries,” Interface Sci. 11, 131–148 (2003). CrossRef A. Suzuki and Y. Mishin, “Atomistic modeling of point defects and diffusion in copper grain boundaries,” Interface Sci. 11, 131–148 (2003). CrossRef
2.
Zurück zum Zitat M. A. Tschopp and D. L. McDowell, “Structures and energies of Σ3 asymmetric tilt grain boundaries in copper and aluminium,” Philos. Mag. 87 (22), 3147–3173 (2007). CrossRef M. A. Tschopp and D. L. McDowell, “Structures and energies of Σ3 asymmetric tilt grain boundaries in copper and aluminium,” Philos. Mag. 87 (22), 3147–3173 (2007). CrossRef
3.
Zurück zum Zitat A. V. Vekman, “Tilt grain boundary energy in fcc metals and alloys,” Izv. Tomskogo Politekhnicheskogo Un-ta 313 (3), 96–100 (2008). A. V. Vekman, “Tilt grain boundary energy in fcc metals and alloys,” Izv. Tomskogo Politekhnicheskogo Un-ta 313 (3), 96–100 (2008).
4.
Zurück zum Zitat J. Hickman and Y. Mishin, “Extra variable in grain boundary description,” Phys. Rev. Mater. 1, 010601 (2017). CrossRef J. Hickman and Y. Mishin, “Extra variable in grain boundary description,” Phys. Rev. Mater. 1, 010601 (2017). CrossRef
5.
Zurück zum Zitat D. Farkas, “Grain-boundary structures in hexagonal materials: Coincident and near coincident grain boundaries,” Metall. Mater. Trans. A 25, 1337–1346 (1994). CrossRef D. Farkas, “Grain-boundary structures in hexagonal materials: Coincident and near coincident grain boundaries,” Metall. Mater. Trans. A 25, 1337–1346 (1994). CrossRef
6.
Zurück zum Zitat J. Wang and I. J. Beyerlein, “Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals,” Modelling Simul. Mater. Sci. Eng . 20, 024002 (2012). CrossRef J. Wang and I. J. Beyerlein, “Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals,” Modelling Simul. Mater. Sci. Eng . 20, 024002 (2012). CrossRef
7.
Zurück zum Zitat Ch. Xu, L. Yuana, R. Shivpuric, D. Shana, and B. Guo, “Role of misorientation angle in twinning and dislocation slip for nano Mg bicrystals with [2 \(\bar {1}\bar {1}\)0] symmetric tilt grain boundaries under uniaxial compression and tension,” Modelling Simul. Mater. Sci. Eng. 27 (3), 1–35 (2019). Ch. Xu, L. Yuana, R. Shivpuric, D. Shana, and B. Guo, “Role of misorientation angle in twinning and dislocation slip for nano Mg bicrystals with [2 \(\bar {1}\bar {1}\)0] symmetric tilt grain boundaries under uniaxial compression and tension,” Modelling Simul. Mater. Sci. Eng. 27 (3), 1–35 (2019).
8.
Zurück zum Zitat S. Plimton, “Fast parallel algorithms for short range molecular dynamics,” J. Comp. Phys. 117, 1–19 (1995). CrossRef S. Plimton, “Fast parallel algorithms for short range molecular dynamics,” J. Comp. Phys. 117, 1–19 (1995). CrossRef
9.
Zurück zum Zitat M. E. Stupak, M. G. Urazaliev, and V. V. Popov, “Structure and energy of ❬110❭ symmetric tilt boundaries in polycrystalline tungsten,” Phys. Met. Metallogr. 121 (8), 797–803 (2020). CrossRef M. E. Stupak, M. G. Urazaliev, and V. V. Popov, “Structure and energy of ❬110❭ symmetric tilt boundaries in polycrystalline tungsten,” Phys. Met. Metallogr. 121 (8), 797–803 (2020). CrossRef
10.
Zurück zum Zitat M. G. Urazaliev, M. E. Stupak, and V. V. Popov, “Structure and energy of symmetric tilt boundaries with the ❬110❭ axis in Ni and the energy of formation of vacancies in grain boundaries,” Phys. Met. Metallogr. 122 (7), 665–672 (2021). CrossRef M. G. Urazaliev, M. E. Stupak, and V. V. Popov, “Structure and energy of symmetric tilt boundaries with the ❬110❭ axis in Ni and the energy of formation of vacancies in grain boundaries,” Phys. Met. Metallogr. 122 (7), 665–672 (2021). CrossRef
11.
Zurück zum Zitat P. Hirel, “"Atomsk”: A tool for manipulating and converting atomic data files,” Comput. Phys. Commun. 197, 212–219 (2015). CrossRef P. Hirel, “"Atomsk”: A tool for manipulating and converting atomic data files,” Comput. Phys. Commun. 197, 212–219 (2015). CrossRef
12.
Zurück zum Zitat A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool,” Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010). CrossRef A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool,” Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010). CrossRef
13.
Zurück zum Zitat S. Kavousi, B. R. Novak, M. I. Baskes, M. A. Zaeem, and D. Moldovan, “Modified embedded-atom method potential for high-temperature crystal-melt properties of Ti–Ni alloys and its application to phase field simulation of solidification,” Modelling Simul. Mater. Sci. Eng. 28, 015006 (2019). CrossRef S. Kavousi, B. R. Novak, M. I. Baskes, M. A. Zaeem, and D. Moldovan, “Modified embedded-atom method potential for high-temperature crystal-melt properties of Ti–Ni alloys and its application to phase field simulation of solidification,” Modelling Simul. Mater. Sci. Eng. 28, 015006 (2019). CrossRef
14.
Zurück zum Zitat S. B. Maisel, W.-S. Ko, J.-L. Zhang, B. Grabowski, and J. Neugebauer, “Thermomechanical response of NiTi shape-memory nanoprecipitates in TiV alloys,” Phys. Rev. Mater. 1, 033610 (2017). CrossRef S. B. Maisel, W.-S. Ko, J.-L. Zhang, B. Grabowski, and J. Neugebauer, “Thermomechanical response of NiTi shape-memory nanoprecipitates in TiV alloys,” Phys. Rev. Mater. 1, 033610 (2017). CrossRef
15.
Zurück zum Zitat S.-H. Oh, D. Seol, and B.-J. Lee, “Second nearest-neighbor modified embedded-atom method interatomic potentials for the Co–M (M = Ti, V) binary systems,” Calphad 70, 101791 (2020). CrossRef S.-H. Oh, D. Seol, and B.-J. Lee, “Second nearest-neighbor modified embedded-atom method interatomic potentials for the Co–M (M = Ti, V) binary systems,” Calphad 70, 101791 (2020). CrossRef
16.
Zurück zum Zitat M. I. Mendelev, T. L. Underwood, and G. J. Ackland, “Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium,” J. Chem. Phys. 145, 154102 (2016). CrossRef M. I. Mendelev, T. L. Underwood, and G. J. Ackland, “Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium,” J. Chem. Phys. 145, 154102 (2016). CrossRef
17.
Zurück zum Zitat R. R. Zope and Y. Mishin, “Interatomic potentials for atomistic simulations of the Ti–Al system,” Phys. Rev. B 68, 024102 (2003). CrossRef R. R. Zope and Y. Mishin, “Interatomic potentials for atomistic simulations of the Ti–Al system,” Phys. Rev. B 68, 024102 (2003). CrossRef
18.
Zurück zum Zitat C. Kittel, P. McEuen, and P. McEuen, Introduction to Solid State Physics (Wiley, New York, 1996). C. Kittel, P. McEuen, and P. McEuen, Introduction to Solid State Physics (Wiley, New York, 1996).
19.
Zurück zum Zitat E. S. Fisher and C. J. Renken, “Single-Crystal Elastic Moduli and the hcp → bcc Transformation in Ti, Zr, and Hf,” Phys. Rev. A 135, 482 (1964). CrossRef E. S. Fisher and C. J. Renken, “Single-Crystal Elastic Moduli and the hcp → bcc Transformation in Ti, Zr, and Hf,” Phys. Rev. A 135, 482 (1964). CrossRef
20.
Zurück zum Zitat E. Hashimoto, E. A. Smirnov, and T. Kino, “Temperature dependence of the Doppler-broadened lineshape of positron annihilation in α-Ti,” J. Phys. F Met. Phys. 14, L215 (1984). CrossRef E. Hashimoto, E. A. Smirnov, and T. Kino, “Temperature dependence of the Doppler-broadened lineshape of positron annihilation in α-Ti,” J. Phys. F Met. Phys. 14, L215 (1984). CrossRef
21.
Zurück zum Zitat W. R. Tyson and W. A. Miller, “Surface free energies of solid metals. Estimation from liquid surface tension measurements,” Surf. Sci. 62, 267–276 (1977). CrossRef W. R. Tyson and W. A. Miller, “Surface free energies of solid metals. Estimation from liquid surface tension measurements,” Surf. Sci. 62, 267–276 (1977). CrossRef
22.
Zurück zum Zitat I. I. Novoselov, A. Y. Kuksin, and A. V. Yanilkin, “Energies of formation and structures of point defects at tilt grain boundaries in molybdenum,” Phys. Solid State 56, 1401–1407 (2014). CrossRef I. I. Novoselov, A. Y. Kuksin, and A. V. Yanilkin, “Energies of formation and structures of point defects at tilt grain boundaries in molybdenum,” Phys. Solid State 56, 1401–1407 (2014). CrossRef
23.
Zurück zum Zitat J. Wang and I. J. Beyerlein, “Atomic Structures of [0–110] Symmetric Tilt Grain Boundaries in Hexagonal Close-Packed (hcp) CrystalsModel,” Simul. Mater. Sci. Eng. 20, 3557–3568 (2012). J. Wang and I. J. Beyerlein, “Atomic Structures of [0–110] Symmetric Tilt Grain Boundaries in Hexagonal Close-Packed (hcp) CrystalsModel,” Simul. Mater. Sci. Eng. 20, 3557–3568 (2012).
24.
Zurück zum Zitat J. W. Cahl, Y. Mishin, and A. Suzuki, “Coupling grain boundary motion to shear deformation,” Acta Mater. 54, 4953–4975 (2006). CrossRef J. W. Cahl, Y. Mishin, and A. Suzuki, “Coupling grain boundary motion to shear deformation,” Acta Mater. 54, 4953–4975 (2006). CrossRef
25.
Zurück zum Zitat V. V. Popov, “Mossbauer spectroscopy of interfaces in metals,” Phys. Met. Metallogr. 113 (13), 1257–1289 (2012). CrossRef V. V. Popov, “Mossbauer spectroscopy of interfaces in metals,” Phys. Met. Metallogr. 113 (13), 1257–1289 (2012). CrossRef
26.
Zurück zum Zitat A. Hallil, A. Metsu, J. Bouhattate, and X. Feaugas, “Correlation between vacancy formation and Σ3 grain boundary structures in nickel from atomistic simulations,” Phil. Mag. 96 (20), 2088–2114 (2016). CrossRef A. Hallil, A. Metsu, J. Bouhattate, and X. Feaugas, “Correlation between vacancy formation and Σ3 grain boundary structures in nickel from atomistic simulations,” Phil. Mag. 96 (20), 2088–2114 (2016). CrossRef
27.
Zurück zum Zitat T. Surholt, Yu. Mishin, and Chr. Herzig, “Grain-boundary diffusion and segregation of gold in copper: Investigation in type-B and type-C kinetic regimes,” Phys. Rev. B 50 (6), 3577–3587 (1994). CrossRef T. Surholt, Yu. Mishin, and Chr. Herzig, “Grain-boundary diffusion and segregation of gold in copper: Investigation in type-B and type-C kinetic regimes,” Phys. Rev. B 50 (6), 3577–3587 (1994). CrossRef
28.
Zurück zum Zitat B. Fultz, H. Kuwano, and H. Ouyang, “Average widths of grain boundaries in nanophase alloys synthesized by mechanical attrition,” J. Appl. Phys. 77, 3458–3466 (1995). CrossRef B. Fultz, H. Kuwano, and H. Ouyang, “Average widths of grain boundaries in nanophase alloys synthesized by mechanical attrition,” J. Appl. Phys. 77, 3458–3466 (1995). CrossRef
29.
Zurück zum Zitat M. A. Bhatia and K. N. Solanki, “Energetics of vacancy segregation to symmetric tilt grain boundaries in hexagonal closed pack materials,” J. Appl. Phys. 114, 244309 (2013). CrossRef M. A. Bhatia and K. N. Solanki, “Energetics of vacancy segregation to symmetric tilt grain boundaries in hexagonal closed pack materials,” J. Appl. Phys. 114, 244309 (2013). CrossRef
30.
Zurück zum Zitat C. Herzig, T. Wilger, T. Przeorski, F. Hisker, and S. Divinski, “Titanium tracer diffusion in grain boundaries of α-Ti, α 2-Ti 3Al, and γ-TiAl and in α2/γ interphase boundaries,” Intermetallics 9, 431–442 (2001). CrossRef C. Herzig, T. Wilger, T. Przeorski, F. Hisker, and S. Divinski, “Titanium tracer diffusion in grain boundaries of α-Ti, α 2-Ti 3Al, and γ-TiAl and in α2/γ interphase boundaries,” Intermetallics 9, 431–442 (2001). CrossRef
Metadaten
Titel
An Atomistic Simulation of Special Tilt Boundaries in α-Ti: Structure, Energy, Point Defects, and Grain-Boundary Self-Diffusion
verfasst von
M. G. Urazaliev
M. E. Stupak
V. V. Popov
Publikationsdatum
01.06.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 6/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2206014X

Weitere Artikel der Ausgabe 6/2022

Physics of Metals and Metallography 6/2022 Zur Ausgabe