Skip to main content

2025 | OriginalPaper | Buchkapitel

An Authentication Model Using Brainwave Panic Region Classifications from Electroencephalography

verfasst von : Opeyemi Anuoluwa Abiodun, Oghenerukevwe E. Oyinloye, Aderonke F. Thompson, Paul Olowoyo, Agbotiname Lucky Imoize, Samarendra Nath Sur

Erschienen in: Advances in Communication, Devices and Networking

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biometric authentication scheme has been widely adopted for authentication purpose due to its uniqueness, universality, and distinctiveness. However, research has shown that these schemes are not necessarily more secured, especially with issues of coercion proliferating the cyberspace. Also, available techniques on repudiation of biometric features for authentication have not adequately explored this exciting topic. Integrating emotional state into the authentication scheme helps to mitigate coercion. This paper presents a framework for emotion as a way of biometric authentication scheme. An emotion classification model was developed by training an emotion classifier brainwave signal from eight subjects under normal state and duress using KNN machine learning algorithm. The authentication scheme grants access to users who pass both verification phases. The emotion classification model achieved an accuracy of 93.6% on the full feature set, while the reduced-feature set, as a result of feature selection, produced an improved accuracy of 94.15%. Hence, the emotion classification model can be integrated into existing biometric authentication system for improved security of critical user information.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Arias-Cabarcos P, Habrich T, Becker K, Becker C, Strufe T (2021) Inexpensive brainwave authentication: new techniques and insights on user acceptance. In: 30th USENIX security symposium (USENIX Security 21) (pp 55–72) Arias-Cabarcos P, Habrich T, Becker K, Becker C, Strufe T (2021) Inexpensive brainwave authentication: new techniques and insights on user acceptance. In: 30th USENIX security symposium (USENIX Security 21) (pp 55–72)
2.
Zurück zum Zitat Lakhani V, Baxi V (2021) User authentication and cryptography using brain signals–a systematic review. Reliab Theory Appl 16:359–368 Lakhani V, Baxi V (2021) User authentication and cryptography using brain signals–a systematic review. Reliab Theory Appl 16:359–368
3.
Zurück zum Zitat Tharwat A (2021) Independent component analysis: an introduction. Appl Comput Inf 17(2):222–249 Tharwat A (2021) Independent component analysis: an introduction. Appl Comput Inf 17(2):222–249
4.
Zurück zum Zitat Wong RZ, Choo YH, Muda AK (2020) Task sensitivity in continuous electroencephalogram person authentication. Int J Adv Comput Sci Appl 11(2):552–558 Wong RZ, Choo YH, Muda AK (2020) Task sensitivity in continuous electroencephalogram person authentication. Int J Adv Comput Sci Appl 11(2):552–558
5.
Zurück zum Zitat Yang GC (2020) Next-generation personal authentication scheme based on EEG signal and deep learning. J Inf Process Syst 16(5):1034–1047 Yang GC (2020) Next-generation personal authentication scheme based on EEG signal and deep learning. J Inf Process Syst 16(5):1034–1047
6.
Zurück zum Zitat Yusuf N, Marafa KA, Shehu KL, Mamman H, Maidawa M (2020) A survey of biometric approaches of authentication. Int J Adv Comput Res 10(47):96–104CrossRef Yusuf N, Marafa KA, Shehu KL, Mamman H, Maidawa M (2020) A survey of biometric approaches of authentication. Int J Adv Comput Res 10(47):96–104CrossRef
8.
Zurück zum Zitat Sooriyaarachchi J, Seneviratne S, Thilakarathna K, Zomaya AY (2020) MusicID: a brainwave-based user authentication system for Internet of Things. IEEE Internet Things J 8(10):8304–8313CrossRef Sooriyaarachchi J, Seneviratne S, Thilakarathna K, Zomaya AY (2020) MusicID: a brainwave-based user authentication system for Internet of Things. IEEE Internet Things J 8(10):8304–8313CrossRef
9.
Zurück zum Zitat Álvarez L, Barbierato E, Caputo S, Mucchi L, Hernández Encinas L (2022) EEG authentication system based on one-and multi-class machine learning classifiers. Sensors 23(1):186CrossRef Álvarez L, Barbierato E, Caputo S, Mucchi L, Hernández Encinas L (2022) EEG authentication system based on one-and multi-class machine learning classifiers. Sensors 23(1):186CrossRef
10.
Zurück zum Zitat Soni YS, Somani SB, Shete VV (2016) Biometric user authentication using brain waves. In: 2016 international conference on inventive computation technologies (ICICT) (vol 2, pp 1–6). IEEE Soni YS, Somani SB, Shete VV (2016) Biometric user authentication using brain waves. In: 2016 international conference on inventive computation technologies (ICICT) (vol 2, pp 1–6). IEEE
11.
Zurück zum Zitat Kopito R, Haruvi A, Brande-Eilat N, Kalev S, Kay E, Furman D (2021) Brain-based authentication: towards a scalable, commercial grade solution using noninvasive brain signals. bioRxiv, 2021–04 Kopito R, Haruvi A, Brande-Eilat N, Kalev S, Kay E, Furman D (2021) Brain-based authentication: towards a scalable, commercial grade solution using noninvasive brain signals. bioRxiv, 2021–04
14.
Zurück zum Zitat Bano KS, Bhuyan P, Ray A (2022) EEG-based brain computer interface for emotion recognition. In: 2022 5th international conference on computational intelligence and networks (CINE) (pp 1–6). IEEE Bano KS, Bhuyan P, Ray A (2022) EEG-based brain computer interface for emotion recognition. In: 2022 5th international conference on computational intelligence and networks (CINE) (pp 1–6). IEEE
15.
Zurück zum Zitat Hamada M, Zaidan BB, Zaidan AA (2018) A systematic review for human EEG brain signals based emotion classification, feature extraction, brain condition, group comparison. J Med Syst 42:1–25CrossRef Hamada M, Zaidan BB, Zaidan AA (2018) A systematic review for human EEG brain signals based emotion classification, feature extraction, brain condition, group comparison. J Med Syst 42:1–25CrossRef
16.
Zurück zum Zitat Li TM, Chao HC, Zhang J (2019) Emotion classification based on brain wave: a survey. HCIS 9(1):1–17 Li TM, Chao HC, Zhang J (2019) Emotion classification based on brain wave: a survey. HCIS 9(1):1–17
17.
Zurück zum Zitat Dzedzickis A, Kaklauskas A, Bucinskas V (2020) Human emotion recognition: review of sensors and methods. Sensors 20(3):592CrossRef Dzedzickis A, Kaklauskas A, Bucinskas V (2020) Human emotion recognition: review of sensors and methods. Sensors 20(3):592CrossRef
18.
Zurück zum Zitat Yang L, Wen C, Wen T (2022) Multilevel fine fingerprint authentication method for key operating equipment identification in cyber-physical systems. IEEE Trans Industr Inf 19(2):1217–1226CrossRef Yang L, Wen C, Wen T (2022) Multilevel fine fingerprint authentication method for key operating equipment identification in cyber-physical systems. IEEE Trans Industr Inf 19(2):1217–1226CrossRef
Metadaten
Titel
An Authentication Model Using Brainwave Panic Region Classifications from Electroencephalography
verfasst von
Opeyemi Anuoluwa Abiodun
Oghenerukevwe E. Oyinloye
Aderonke F. Thompson
Paul Olowoyo
Agbotiname Lucky Imoize
Samarendra Nath Sur
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_17