Skip to main content
Erschienen in: Environmental Earth Sciences 9/2024

01.05.2024 | Original Article

An automatic model selection-based machine learning approach to predict seawater intrusion into coastal aquifers

verfasst von: Dilip Kumar Roy, Chitra Rani Paul, Tasnia Hossain Munmun, Bithin Datta

Erschienen in: Environmental Earth Sciences | Ausgabe 9/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Concerns about seawater intrusion resulting from unplanned mining of groundwater from coastal aquifers have become a global issue. To address this, it is crucial to implement a well-structured plan for groundwater withdrawal that can effectively manage and restrict salinity levels within the aquifer to acceptable levels. An integrated simulation–optimization (S–O) system has been a suitable tool for developing an optimum groundwater withdrawal scheme for managing seawater intrusion. The success of an S–O methodology largely depends on the use of computationally competent surrogates for the intricate simulation model. Although several surrogate models have been recently proposed to create management models for seawater intrusion using integrated S–O approach, the majority of these surrogates have been developed based on the subjective judgement. To fill this research gap, this study proposes an automatic model selection (AutoML)-based machine learning (ML) approach to predict the mechanisms of seawater intrusion in coastal aquifers. The AutoML was performed by optimizing the hyperparameters of a number of ML algorithms and selecting the best performing algorithm utilizing the asynchronous successive halving algorithm (ASHA). The best performing models were developed at 16 monitoring locations (MLs) using the predictor–response training data originated from a simulation model. Results revealed the capability of the ASHA optimization-based AutoML scheme to optimally select the best performing models with adequate prediction accuracies for the particular MLs. The selected best models at various monitoring locations exhibited high performance with accuracy (= 1), R (~ 0.99), NS (~ 0.99), IOA (~ 0.99), and KGE (~ 0.99), which are close to 1, indicating excellent model accuracy. Furthermore, the models demonstrated an RMSE value range of 0.0003–1.4987 mg/L, a relatively small range that is considered favorable for any predictive modeling approach. This study reveals the suitability and efficacy of the automatically selected surrogate models to develop an S–O-based management model to address real-world coastal aquifer management challenges related to seawater intrusion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281–305 Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281–305
Zurück zum Zitat Deb K, Goel T (2001) Controlled elitist non-dominated sorting genetic algorithms for better convergence BT—evolutionary multi-criterion optimization. In: Zitzler E, Thiele L, Deb K et al (eds) Springer. Berlin, Heidelberg, pp 67–81 Deb K, Goel T (2001) Controlled elitist non-dominated sorting genetic algorithms for better convergence BT—evolutionary multi-criterion optimization. In: Zitzler E, Thiele L, Deb K et al (eds) Springer. Berlin, Heidelberg, pp 67–81
Zurück zum Zitat Faneca Sànchez M, Bashar K, Janssen G, Vogels M, Snel J, Zhou Y, Stuurman RJ, Oude Essink G (2015) SWIBANGLA: managing saltwater intrusion impacts in coastal groundwater systems of Bangladesh Final Report. https://doi.org/10.13140/2.1.2447.0721. Deltares report number: 1207671–000-BGS-0016 Faneca Sànchez M, Bashar K, Janssen G, Vogels M, Snel J, Zhou Y, Stuurman RJ, Oude Essink G (2015) SWIBANGLA: managing saltwater intrusion impacts in coastal groundwater systems of Bangladesh Final Report. https://​doi.​org/​10.​13140/​2.​1.​2447.​0721. Deltares report number: 1207671–000-BGS-0016
Zurück zum Zitat Forrester AIJ, Sóbester A, Keane AJ (2008) Engineering design via surrogate modelling: a practical guide. John Wiley & Sons Ltd, OxfordCrossRef Forrester AIJ, Sóbester A, Keane AJ (2008) Engineering design via surrogate modelling: a practical guide. John Wiley & Sons Ltd, OxfordCrossRef
Zurück zum Zitat Jamieson K, Talwalkar A (2015) Non-stochastic best arm identification and hyperparameter optimization Jamieson K, Talwalkar A (2015) Non-stochastic best arm identification and hyperparameter optimization
Zurück zum Zitat Karnin Z, Koren T, Somekh O (2013) Almost optimal exploration in multi-armed bandits. 30th Int Conf Mach Learn ICML 2013 2275–2283 Karnin Z, Koren T, Somekh O (2013) Almost optimal exploration in multi-armed bandits. 30th Int Conf Mach Learn ICML 2013 2275–2283
Zurück zum Zitat Kirch W (2008) Pearson’s correlation coefficient. In: Kirch W (ed) Encyclopedia of public health. Springer, Netherlands, pp 1090–1091CrossRef Kirch W (2008) Pearson’s correlation coefficient. In: Kirch W (ed) Encyclopedia of public health. Springer, Netherlands, pp 1090–1091CrossRef
Zurück zum Zitat Li L, Jamieson K, Rostamizadeh A et al (2020) A system for massively parallel hyperparameter tuning. In: Proceedings of the 3 rd MLSys Conference. Austin, TX, USA Li L, Jamieson K, Rostamizadeh A et al (2020) A system for massively parallel hyperparameter tuning. In: Proceedings of the 3 rd MLSys Conference. Austin, TX, USA
Zurück zum Zitat Lin H-CJ, Richards DR, Talbot CA et al (1997) FEMWATER: a threedimensional finite element computer model for simulating density-dependent flow and transport in variable saturated media. Technical Rep No CHL-97–12. US Army Engineer Water Lin H-CJ, Richards DR, Talbot CA et al (1997) FEMWATER: a threedimensional finite element computer model for simulating density-dependent flow and transport in variable saturated media. Technical Rep No CHL-97–12. US Army Engineer Water
Zurück zum Zitat Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS One 10:e0118571CrossRef Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS One 10:e0118571CrossRef
Zurück zum Zitat Pal R (2017) Validation methodologies. pp 83–107 Pal R (2017) Validation methodologies. pp 83–107
Zurück zum Zitat Roy DK, Datta B (2018b) Selection of meta-models to predict saltwater intrusion in coastal aquifers using entropy weight based decision theory. In: 2018 IEEE Conference on Technologies for Sustainability (SusTech 2018). Long Beach, California, USA Roy DK, Datta B (2018b) Selection of meta-models to predict saltwater intrusion in coastal aquifers using entropy weight based decision theory. In: 2018 IEEE Conference on Technologies for Sustainability (SusTech 2018). Long Beach, California, USA
Zurück zum Zitat Roy DK, Datta B (2018c) Optimal management of groundwater extraction to control saltwater intrusion in multi-layered coastal aquifers using ensembles of adaptive neuro-fuzzy inference system. World Environ Water Resour Congr 2017:139–150 Roy DK, Datta B (2018c) Optimal management of groundwater extraction to control saltwater intrusion in multi-layered coastal aquifers using ensembles of adaptive neuro-fuzzy inference system. World Environ Water Resour Congr 2017:139–150
Metadaten
Titel
An automatic model selection-based machine learning approach to predict seawater intrusion into coastal aquifers
verfasst von
Dilip Kumar Roy
Chitra Rani Paul
Tasnia Hossain Munmun
Bithin Datta
Publikationsdatum
01.05.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 9/2024
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-024-11589-z

Weitere Artikel der Ausgabe 9/2024

Environmental Earth Sciences 9/2024 Zur Ausgabe