Skip to main content
Erschienen in: Advances in Manufacturing 1/2020

27.11.2019

An automatic optimization method for minimizing supporting structures in additive manufacturing

verfasst von: Xiao-Jun Chen, Jun-Lei Hu, Qing-Long Zhou, Constantinus Politis, Yi Sun

Erschienen in: Advances in Manufacturing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The amount of supporting structure usage has been a major research topic in layer-based additive manufacturing (AM) over the past years as it leads to increased fabrication time and decreased surface quality. Previous studies focused on deformation and topology optimization to eliminate the number of support structures. However, during the actual fabrication process, the properties of shape and topology are essential. Therefore, they should not be modified casually. In this study, we present an optimizer that reduces the number of supporting structures by identifying the prime printing direction. Without rotation, models are projected in each direction in space, and the basis units involved in the generation of support structures are separated. Furthermore, the area of the supporting structures is calculated. Eventually, the prime printing direction with minimal supporting area is obtained through pattern-searching method. The results of the experiment demonstrated that the printing area was reduced by up to 60% for some cases, and the surface quality was also improved correspondingly. Furthermore, both the material consumption and fabrication time were decreased in most cases. In future work, additional factors will be considered, such as the height of the supporting structures and the adhesion locations to improve the efficiency of this optimizer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cunico MWM (2011) Development of new rapid prototyping process. Rapid Prototyp J 17:138–147CrossRef Cunico MWM (2011) Development of new rapid prototyping process. Rapid Prototyp J 17:138–147CrossRef
2.
Zurück zum Zitat Jin Y, He Y (2014) Optimization of tool-path generation for material extrusion-based additive manufacturing technology. Addit Manuf 1/4:32–47 Jin Y, He Y (2014) Optimization of tool-path generation for material extrusion-based additive manufacturing technology. Addit Manuf 1/4:32–47
3.
Zurück zum Zitat Pereira S, Vaz AIF, Vicente LN (2018) On the optimal object orientation in additive manufacturing. Int J Adv Manuf Technol 98:1685–1694CrossRef Pereira S, Vaz AIF, Vicente LN (2018) On the optimal object orientation in additive manufacturing. Int J Adv Manuf Technol 98:1685–1694CrossRef
4.
Zurück zum Zitat Cheng W, Fuh JYH, Nee AYC et al (1995) Multi-objective optimization of part building orientation in stereolithography. Rapid Prototyp J 1(4):12–23CrossRef Cheng W, Fuh JYH, Nee AYC et al (1995) Multi-objective optimization of part building orientation in stereolithography. Rapid Prototyp J 1(4):12–23CrossRef
5.
Zurück zum Zitat Hu K, Jin S, Wang CCL (2015) Supporting slimming for single material based additive manufacturing. Comput Aided Des 65:1–10CrossRef Hu K, Jin S, Wang CCL (2015) Supporting slimming for single material based additive manufacturing. Comput Aided Des 65:1–10CrossRef
6.
Zurück zum Zitat Jiang J, Xu X, Stringer J (2018) Support structures for additive manufacturing: a review. J Manuf Mater Process 2(4):64 Jiang J, Xu X, Stringer J (2018) Support structures for additive manufacturing: a review. J Manuf Mater Process 2(4):64
7.
Zurück zum Zitat Tay YWD, Li MY, Tan MJ (2019) Effect of printing parameters in 3D concrete printing: printing region and support structures. J Mater Process Technol 271:261–270CrossRef Tay YWD, Li MY, Tan MJ (2019) Effect of printing parameters in 3D concrete printing: printing region and support structures. J Mater Process Technol 271:261–270CrossRef
8.
Zurück zum Zitat Gao W (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89CrossRef Gao W (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89CrossRef
9.
Zurück zum Zitat Stava O, Vanek J, Benes B (2012) Stress relief: improving structural strength of 3D printable objects. ACM Trans Graph 31(4):1–11CrossRef Stava O, Vanek J, Benes B (2012) Stress relief: improving structural strength of 3D printable objects. ACM Trans Graph 31(4):1–11CrossRef
10.
Zurück zum Zitat Luo L, Baran I, Rusinkiewicz S et al (2012) Chopper: partitioning models into 3D-printable parts. ACM Trans Graph 31(6):1–9 Luo L, Baran I, Rusinkiewicz S et al (2012) Chopper: partitioning models into 3D-printable parts. ACM Trans Graph 31(6):1–9
11.
Zurück zum Zitat Chen D, Levin D, Didyk P et al (2013) Spec2Fab: a reducer-tuner model for translating specifi cations to 3D prints. ACM Trans Graph 32(4):1–9 Chen D, Levin D, Didyk P et al (2013) Spec2Fab: a reducer-tuner model for translating specifi cations to 3D prints. ACM Trans Graph 32(4):1–9
12.
Zurück zum Zitat Paul R, Anand S (2015) Optimization of layered manufacturing process for reducing form errors with minimal support structures. J Manuf Syst 35:231–243CrossRef Paul R, Anand S (2015) Optimization of layered manufacturing process for reducing form errors with minimal support structures. J Manuf Syst 35:231–243CrossRef
13.
Zurück zum Zitat Leary M, Merli L, Torti F et al (2014) Optimal topology for additive manufacture: a method for enabling additive manufacture of support-free optimal structures. Mater Des 63:678–690CrossRef Leary M, Merli L, Torti F et al (2014) Optimal topology for additive manufacture: a method for enabling additive manufacture of support-free optimal structures. Mater Des 63:678–690CrossRef
14.
Zurück zum Zitat Prévost R, Whiting E, Lefebvre S et al (2013) Make it stand: balancing shapes for 3D fabrication. ACM Trans Graph 32(4):1–10CrossRef Prévost R, Whiting E, Lefebvre S et al (2013) Make it stand: balancing shapes for 3D fabrication. ACM Trans Graph 32(4):1–10CrossRef
15.
Zurück zum Zitat Wang W, Wang TY, Yang Z et al (2013) Cost-effective printing of 3D objects with skin-frame structures. ACM Trans Graph 32(6):1–10 Wang W, Wang TY, Yang Z et al (2013) Cost-effective printing of 3D objects with skin-frame structures. ACM Trans Graph 32(6):1–10
16.
Zurück zum Zitat Chen Y (1997) Determining parting direction based on minimum bounding box and fuzzy logics. Int J Mach Tools Manuf 37(9):1189–1199CrossRef Chen Y (1997) Determining parting direction based on minimum bounding box and fuzzy logics. Int J Mach Tools Manuf 37(9):1189–1199CrossRef
17.
Zurück zum Zitat Priyadarshi AK, Gupta SK (2006) Finding mold-piece regions using computer graphics hardware. Lect Notes Comput Sci 4077:655–662CrossRef Priyadarshi AK, Gupta SK (2006) Finding mold-piece regions using computer graphics hardware. Lect Notes Comput Sci 4077:655–662CrossRef
18.
Zurück zum Zitat Khardekar R, Burton G, McMains S (2006) Finding feasible mold parting directions using graphics hardware. Comput Aided Des 38(4):327–341CrossRef Khardekar R, Burton G, McMains S (2006) Finding feasible mold parting directions using graphics hardware. Comput Aided Des 38(4):327–341CrossRef
19.
Zurück zum Zitat Li W, Martin R, Langbein FC (2009) Molds for meshes: computing smooth parting lines and undercut removal. IEEE Trans Autom Sci Eng 6(3):423–432CrossRef Li W, Martin R, Langbein FC (2009) Molds for meshes: computing smooth parting lines and undercut removal. IEEE Trans Autom Sci Eng 6(3):423–432CrossRef
20.
Zurück zum Zitat Cheng B, Chou K (2015) Geometric consideration of support structures in part overhang fabrications by electron beam additive manufacturing. Comput Aided Des 69:102–111CrossRef Cheng B, Chou K (2015) Geometric consideration of support structures in part overhang fabrications by electron beam additive manufacturing. Comput Aided Des 69:102–111CrossRef
21.
Zurück zum Zitat Giannitelli SM, Mozetic P, Trombetta M et al (2015) Combined additive manufacturing approaches in tissue engineering. Acta Biomater 24:1–11CrossRef Giannitelli SM, Mozetic P, Trombetta M et al (2015) Combined additive manufacturing approaches in tissue engineering. Acta Biomater 24:1–11CrossRef
22.
Zurück zum Zitat Tyberg J, Bohn JH (1999) FDM systems and local adaptive slicing. Mater Des 20(2/3):77–82CrossRef Tyberg J, Bohn JH (1999) FDM systems and local adaptive slicing. Mater Des 20(2/3):77–82CrossRef
23.
Zurück zum Zitat Huang P, Wang CCL, Chen Y (2014) Algorithms for layered manufacturing in image space. Adv Comput Inf Eng Res 1:377–410 Huang P, Wang CCL, Chen Y (2014) Algorithms for layered manufacturing in image space. Adv Comput Inf Eng Res 1:377–410
24.
Zurück zum Zitat Chen Y, Li K, Qian X (2013) Direct geometry processing for tele-fabrication. J Comput Inf Sci Eng 13(4):1–18 Chen Y, Li K, Qian X (2013) Direct geometry processing for tele-fabrication. J Comput Inf Sci Eng 13(4):1–18
Metadaten
Titel
An automatic optimization method for minimizing supporting structures in additive manufacturing
verfasst von
Xiao-Jun Chen
Jun-Lei Hu
Qing-Long Zhou
Constantinus Politis
Yi Sun
Publikationsdatum
27.11.2019
Verlag
Shanghai University
Erschienen in
Advances in Manufacturing / Ausgabe 1/2020
Print ISSN: 2095-3127
Elektronische ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-019-00277-y

Weitere Artikel der Ausgabe 1/2020

Advances in Manufacturing 1/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.