Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

09.04.2018 | S.I. : Emerging Intelligent Algorithms for Edge-of-Things Computing | Ausgabe 5/2019

Neural Computing and Applications 5/2019

An Automatic Tamil Speech Recognition system by using Bidirectional Recurrent Neural Network with Self-Organizing Map

Zeitschrift:
Neural Computing and Applications > Ausgabe 5/2019
Autoren:
S. Lokesh, Priyan Malarvizhi Kumar, M. Ramya Devi, P. Parthasarathy, C. Gokulnath

Abstract

Speech recognition is one of the entrancing fields in the zone of computer science. Exactness of speech recognition framework may decrease because of the nearness of noise exhibited by the speech signal. Consequently, noise removal is a fundamental advance in automatic speech recognition (ASR) system. ASR is researched for various languages in light of the fact that every language has its particular highlights. Particularly, the requirement for ASR framework in Tamil language has been expanded broadly over the most recent couple of years. In this work, bidirectional recurrent neural network (BRNN) with self-organizing map (SOM)-based classification scheme is suggested for Tamil speech recognition. At first, the input speech signal is pre-prepared by utilizing Savitzky–Golay filter keeping in mind the end goal to evacuate the background noise and to improve the signal. At that point, Multivariate Autoregressive based highlights by presenting discrete cosine transformation piece to give a proficient signal investigation. And in addition, perceptual linear predictive coefficients likewise separated to enhance the classification accuracy. The feature vector is shifted in measure, for picking the right length of feature vector SOM utilized. At long last, Tamil digits and words are ordered by utilizing BRNN classifier where the settled length feature vector from SOM is given as input, named as BRNN-SOM. The experimental analysis demonstrates that the suggested conspire accomplished preferable outcomes looked at over exist deep neural network–hidden Markov model algorithm regarding signal-to-noise ratio, classification accuracy, and mean square error.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2019

Neural Computing and Applications 5/2019 Zur Ausgabe

S.I. : Emerging Intelligent Algorithms for Edge-of-Things Computing

Gray relational clustering model for intelligent guided monitoring horizontal wells

S.I. : Emerging Intelligent Algorithms for Edge-of-Things Computing

Tuberculosis (TB) detection system using deep neural networks

Premium Partner

    Bildnachweise