Skip to main content

2024 | OriginalPaper | Buchkapitel

An Automotive ECU-Based Forward Collision Prevention System

verfasst von : Fariya Islam, Tajruba Tahsin Nileema, Fazle Rabbi Abir, Tasmia Tahmida Jidney, Kazi A. Kalpoma

Erschienen in: Advances in Data-Driven Computing and Intelligent Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study presents a software model that identifies vehicles in front of a test vehicle, measures distances, and classifies them as safe, slow speed, and brake. The classification determines which signal should be transmitted to the control unit. A specially tailored dataset of 2162 images from Bangladesh’s roadside is used for the software model, which uses transfer learning to identify frontal objects, estimate distances, and classify distances according to control unit signals. Furthermore, two microcontrollers are used for hardware systems, utilizing an ultrasonic sensor to calculate distances, identify frontal objects, and show the expected outputs. The AURIX TC375 microcontroller board-control unit receives signals and triggers the appropriate output. This system can serve as a foundation for autonomous vehicle safety research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Bouguettaya A, Zarzour H, Kechida A, Taberkit AM (2021) Vehicle detection from UAV imagery with deep learning: a review. IEEE Trans Neural Netw Learn Syst 33(11):6047–6067. IEEE Bouguettaya A, Zarzour H, Kechida A, Taberkit AM (2021) Vehicle detection from UAV imagery with deep learning: a review. IEEE Trans Neural Netw Learn Syst 33(11):6047–6067. IEEE
3.
Zurück zum Zitat Ramadan H, AbdElkader A, Khaled A, AbdElalem A, Mohamed W, Tawfik H (2021–2022) Vehicle detection and distance estimation. In: The 1st student conference Ramadan H, AbdElkader A, Khaled A, AbdElalem A, Mohamed W, Tawfik H (2021–2022) Vehicle detection and distance estimation. In: The 1st student conference
4.
Zurück zum Zitat Vajgl M, Hurtik P, Nejezchleba T (2022) Dist-YOLO: fast object detection with distance estimation. Appl Sci 12(3):1354. MDPI Vajgl M, Hurtik P, Nejezchleba T (2022) Dist-YOLO: fast object detection with distance estimation. Appl Sci 12(3):1354. MDPI
5.
Zurück zum Zitat Kumar S, Shaw V, Maitra J, Karmakar R (2020) FCW: a forward collision warning system using convolutional neural network. In: 2020 International conference on electrical and electronics engineering (ICE3). IEEE, pp 1–5 Kumar S, Shaw V, Maitra J, Karmakar R (2020) FCW: a forward collision warning system using convolutional neural network. In: 2020 International conference on electrical and electronics engineering (ICE3). IEEE, pp 1–5
6.
Zurück zum Zitat Venkateswaran N, Jino Hans W, Padmapriya N (2021) Deep learning based robust forward collision warning system with range prediction. Multim Tools Appl 80:20849–20867 Venkateswaran N, Jino Hans W, Padmapriya N (2021) Deep learning based robust forward collision warning system with range prediction. Multim Tools Appl 80:20849–20867
7.
Zurück zum Zitat Mohamed E, Samir A, Alshalfan KA, Al-Hagery MA, Othman MTB (2022) Safe driving distance and speed for collision avoidance in connected vehicles. Sensors 22(18):7051 Mohamed E, Samir A, Alshalfan KA, Al-Hagery MA, Othman MTB (2022) Safe driving distance and speed for collision avoidance in connected vehicles. Sensors 22(18):7051
8.
Zurück zum Zitat Chae H, Kang CM, Kim B, Kim J, Chung CC, Choi JW (2017) Autonomous braking system via deep reinforcement learning. In: 2017 IEEE 20th International conference on intelligent transportation systems (ITSC). IEEE, pp 1–6 Chae H, Kang CM, Kim B, Kim J, Chung CC, Choi JW (2017) Autonomous braking system via deep reinforcement learning. In: 2017 IEEE 20th International conference on intelligent transportation systems (ITSC). IEEE, pp 1–6
9.
Zurück zum Zitat Nesti T, Boddana S, Yaman B (2023) Ultra-sonic sensor based object detection for autonomous vehicles. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 210–218 Nesti T, Boddana S, Yaman B (2023) Ultra-sonic sensor based object detection for autonomous vehicles. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 210–218
10.
Zurück zum Zitat Abdulhamid M, Amondi O (2020) Collision avoidance system using ultrasonic sensor. Land Forces Acad Rev 25(3):259–266 Abdulhamid M, Amondi O (2020) Collision avoidance system using ultrasonic sensor. Land Forces Acad Rev 25(3):259–266
11.
Zurück zum Zitat Baras N, Nantzios G, Ziouzios D, Dasygenis M (2019) Autonomous obstacle avoidance vehicle using lidar and an embedded system. In: 2019 8th International conference on modern circuits and systems technologies (MOCAST). IEEE, pp 1–4 Baras N, Nantzios G, Ziouzios D, Dasygenis M (2019) Autonomous obstacle avoidance vehicle using lidar and an embedded system. In: 2019 8th International conference on modern circuits and systems technologies (MOCAST). IEEE, pp 1–4
Metadaten
Titel
An Automotive ECU-Based Forward Collision Prevention System
verfasst von
Fariya Islam
Tajruba Tahsin Nileema
Fazle Rabbi Abir
Tasmia Tahmida Jidney
Kazi A. Kalpoma
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9521-9_33