Skip to main content
Erschienen in: Cellulose 9/2021

14.04.2021 | Original Research

An eco-friendly and durable multifunctional cotton fabric incorporating ZnO and a branched polymer

verfasst von: Chao Ling, Lamei Guo

Erschienen in: Cellulose | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, we investigated a two-step method of preparing cotton fabrics with flame retardancy and UV-blocking properties. This method involved the in situ deposition of ZnO nanoparticles (NPs) and the synthesis of a phosphorus ammonium salt. The application of ZnO NPs on cotton fabrics was achieved by an in situ ammonia-smoking method with zinc acetate and ammonia. A hyperbranched polyphosphate ammonium salt (FHPOPN) was synthesized for application to the cotton fabrics after the ammonia-smoked finish was applied. This research mainly focused on the fire-resistance and UV-blocking performance of cotton fabrics. The treated cotton fabrics were observed by scanning electron microscopy (SEM). The Fourier transform infrared (FTIR) spectroscopy results showed that ZnO NPs were successfully deposited in the fabric and that FHPOPN was bound to the fabric by covalent bonds. The flame retardancy and UV-protection properties of the treated cotton fabrics were studied. The effect of the zinc acetate concentration on the fire resistance and UV-blocking performance of the fabrics was investigated. The cotton fabrics treated with 70 g/L zinc acetate and 160 g/L FHPOPN obtained excellent flame retardancy with a char length of  57 mm and an limited oxygen index (LOI) value of 36.4%. The peak heat release rate and the total heat release of the ZnO/FHPOPN-treated samples were  26 kW/m2 and 4.4 MJ/m2, respectively, which were slightly lower than those of the FHPOPN-treated samples and much lower than those of the control cotton fabric sample. Furthermore, the thermogravimetric analyses of ZnO/FHPOPN-treated cotton fabric showed a char yield of 33.3% at 800 °C, whereas FHPOPN-treated cotton fabrics had a 29.7% char yield. The ZnO/FHPOPN-treated cotton fabric exhibited effective UV-protection properties with a UPF value of 224.80. These results demonstrated that the ZnO/FHPOPN-treated fabric had excellent flame retardancy, washability and UV-protection performance and revealed the importance of ZnO NPs in enhancing the flame retardancy and UV-blocking of performance cotton fabrics.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abd El-Hady MM, Farouk A, Sharaf S (2013) Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids. Carbohyd Polym 92:400–406CrossRef Abd El-Hady MM, Farouk A, Sharaf S (2013) Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids. Carbohyd Polym 92:400–406CrossRef
Zurück zum Zitat Alvarado LAH, Hernandez LS, Lomelí MA, Miranda JM, Narvaez L (2016) Phytic acid coating on mg-based materials for biodegradable temporary endoprosthetic applications. J Alloy Compd 664:609–618CrossRef Alvarado LAH, Hernandez LS, Lomelí MA, Miranda JM, Narvaez L (2016) Phytic acid coating on mg-based materials for biodegradable temporary endoprosthetic applications. J Alloy Compd 664:609–618CrossRef
Zurück zum Zitat Attia NF, Moussa M, Sheta AMF, Taha R, Gamal H (2017) Synthesis of effective multifunctional textile based on silica nanoparticles. Prog Org Coat 106:41–49CrossRef Attia NF, Moussa M, Sheta AMF, Taha R, Gamal H (2017) Synthesis of effective multifunctional textile based on silica nanoparticles. Prog Org Coat 106:41–49CrossRef
Zurück zum Zitat Bharathi Yazhini K, Gurumallesh Prabu H (2015) Study on flame-retardant and uv-protection properties of cotton fabric functionalized with ppy-ZnO-CNT nanocomposite. RSC Adv 5:49062–49069CrossRef Bharathi Yazhini K, Gurumallesh Prabu H (2015) Study on flame-retardant and uv-protection properties of cotton fabric functionalized with ppy-ZnO-CNT nanocomposite. RSC Adv 5:49062–49069CrossRef
Zurück zum Zitat Chang SC, Condon B, Graves E, Uchimiya M, Fortier C, Easson M et al (2011) Flame retardant properties of triazine phosphonates derivative with cotton fabric. Fibers Polymers 12:334–339CrossRef Chang SC, Condon B, Graves E, Uchimiya M, Fortier C, Easson M et al (2011) Flame retardant properties of triazine phosphonates derivative with cotton fabric. Fibers Polymers 12:334–339CrossRef
Zurück zum Zitat Chen S, Li X, Li Y, Sun J (2015) Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9:4070–4076PubMedCrossRef Chen S, Li X, Li Y, Sun J (2015) Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9:4070–4076PubMedCrossRef
Zurück zum Zitat Cheng X, Yang CQ (2009) Flame retardant finishing of cotton fleece fabric: part v. phosphorus-containing maleic acid oligomers. Fire Mater J 33:365–375CrossRef Cheng X, Yang CQ (2009) Flame retardant finishing of cotton fleece fabric: part v. phosphorus-containing maleic acid oligomers. Fire Mater J 33:365–375CrossRef
Zurück zum Zitat Doganli G, Yuzer B, Aydin I, Gultekin T, Con AH, Selcuk H et al (2016) Functionalization of cotton fabric with nanosized TiO2 coating for self-cleaning and antibacterial property enhancement. J Coat Technol Res 13:257–265CrossRef Doganli G, Yuzer B, Aydin I, Gultekin T, Con AH, Selcuk H et al (2016) Functionalization of cotton fabric with nanosized TiO2 coating for self-cleaning and antibacterial property enhancement. J Coat Technol Res 13:257–265CrossRef
Zurück zum Zitat Dong C, Lu Z, Wang P, Zhu P, Li X, Sui S et al (2017) Flammability and thermal properties of cotton fabrics modified with a novel flame retardant containing triazine and phosphorus components. Text Res J 87:1367–1376CrossRef Dong C, Lu Z, Wang P, Zhu P, Li X, Sui S et al (2017) Flammability and thermal properties of cotton fabrics modified with a novel flame retardant containing triazine and phosphorus components. Text Res J 87:1367–1376CrossRef
Zurück zum Zitat Dong C et al (2018) Preparation and properties of cotton fabrics treated with a novel antimicrobial and flame retardant containing triazine and phosphorus components. J Therm Anal Calorim 131:1079–1087CrossRef Dong C et al (2018) Preparation and properties of cotton fabrics treated with a novel antimicrobial and flame retardant containing triazine and phosphorus components. J Therm Anal Calorim 131:1079–1087CrossRef
Zurück zum Zitat Gaan S, Sun G (2007) Effect of phosphorus and nitrogen on flame retardant cellulose: a study of phosphorus compounds. J Anal Appl Pyrol 78:371–377CrossRef Gaan S, Sun G (2007) Effect of phosphorus and nitrogen on flame retardant cellulose: a study of phosphorus compounds. J Anal Appl Pyrol 78:371–377CrossRef
Zurück zum Zitat Gaan S, Sun G (2009) Effect of nitrogen additives on thermal decomposition of cotton. J Anal Appl Pyrol 84:108–115CrossRef Gaan S, Sun G (2009) Effect of nitrogen additives on thermal decomposition of cotton. J Anal Appl Pyrol 84:108–115CrossRef
Zurück zum Zitat Gao D, Zhao P, Lyu B et al (2020) Composite based on poly(acrylic acid)/modified attapulgite/zinc oxide as a flame retardant of cotton fabrics. Cellulose 27:2873–2886.CrossRef Gao D, Zhao P, Lyu B et al (2020) Composite based on poly(acrylic acid)/modified attapulgite/zinc oxide as a flame retardant of cotton fabrics. Cellulose 27:2873–2886.CrossRef
Zurück zum Zitat Gao WW, Zhang GX, Zhang FX (2015) Enhancement of flame retardancy of cotton fabrics by grafting a novel organic phosphorous-based flame retardant. Cellulose 22:2787–2796CrossRef Gao WW, Zhang GX, Zhang FX (2015) Enhancement of flame retardancy of cotton fabrics by grafting a novel organic phosphorous-based flame retardant. Cellulose 22:2787–2796CrossRef
Zurück zum Zitat Gospodinova N, Grelard A, Jeannin M, Chitanu GC, Carpov A, Thie´ry V, Besson T (2002) Efficient solvent-free microwave phosphorylation of microcrystalline cellulose. Green Chem 4:220–222CrossRef Gospodinova N, Grelard A, Jeannin M, Chitanu GC, Carpov A, Thie´ry V, Besson T (2002) Efficient solvent-free microwave phosphorylation of microcrystalline cellulose. Green Chem 4:220–222CrossRef
Zurück zum Zitat Holme I (2010) Innovative technologies for high performance textiles. Color Technol 123:59–73CrossRef Holme I (2010) Innovative technologies for high performance textiles. Color Technol 123:59–73CrossRef
Zurück zum Zitat Jia Y, Hu Y, Zheng D, Zhang G, Zhang F, Liang Y (2017) Synthesis and evaluation of an efficient, durable, and environmentally friendly flame retardant for cotton. Cellulose 24:1159–1170CrossRef Jia Y, Hu Y, Zheng D, Zhang G, Zhang F, Liang Y (2017) Synthesis and evaluation of an efficient, durable, and environmentally friendly flame retardant for cotton. Cellulose 24:1159–1170CrossRef
Zurück zum Zitat Kandola BK, Horrocks S, Horrocks AR (1997) Evidence of interaction inflame retardant fibre-intumescent combinations by thermal analytical techniques. Thermochim Acta 294:113–125CrossRef Kandola BK, Horrocks S, Horrocks AR (1997) Evidence of interaction inflame retardant fibre-intumescent combinations by thermal analytical techniques. Thermochim Acta 294:113–125CrossRef
Zurück zum Zitat Khosravian S, Majid Montazer, Reza MA, Malek, TinaHarifi (2015) In situ synthesis of nano ZnO on starch sized cotton introducing nano photo active fabric optimized with response surface methodology. Carbohyd Polym 132:126–133 Khosravian S, Majid Montazer, Reza MA, Malek, TinaHarifi (2015) In situ synthesis of nano ZnO on starch sized cotton introducing nano photo active fabric optimized with response surface methodology. Carbohyd Polym 132:126–133
Zurück zum Zitat Kim NK, Lin RJT, Bhattacharyya D (2015) Effects of wool fibres, ammonium polyphosphate and polymer viscosity on the flammability and mechanical performance of PP/wool composites. Polym Degrad Stab 119:167–177CrossRef Kim NK, Lin RJT, Bhattacharyya D (2015) Effects of wool fibres, ammonium polyphosphate and polymer viscosity on the flammability and mechanical performance of PP/wool composites. Polym Degrad Stab 119:167–177CrossRef
Zurück zum Zitat Kong Q, Qian H (2014) Low-temperature synthesis of Mg(OH)2 nanoparticles from MgO as halogen-free flame retardant for polypropylene. Fire Mater 38:145–154CrossRef Kong Q, Qian H (2014) Low-temperature synthesis of Mg(OH)2 nanoparticles from MgO as halogen-free flame retardant for polypropylene. Fire Mater 38:145–154CrossRef
Zurück zum Zitat Kosuge K, Takayasu A, Hori T (2005) Recyclable flame retardant nonwoven for sound absorption; ruba®. J Mater Sci 40:5399–5405CrossRef Kosuge K, Takayasu A, Hori T (2005) Recyclable flame retardant nonwoven for sound absorption; ruba®. J Mater Sci 40:5399–5405CrossRef
Zurück zum Zitat Lam YL, Kan CW, Yuen CWM (2011) Effect of titanium dioxide on the flame-retardant finishing of cotton fabric. J Appl Polym Sci 121:267–278CrossRef Lam YL, Kan CW, Yuen CWM (2011) Effect of titanium dioxide on the flame-retardant finishing of cotton fabric. J Appl Polym Sci 121:267–278CrossRef
Zurück zum Zitat Lecoeur E, Vroman I, Bourbigot S, Lam TM, Delobel R (2001) Flame retardant formulations for cotton. Polym Degrad Stab 74:487–492CrossRef Lecoeur E, Vroman I, Bourbigot S, Lam TM, Delobel R (2001) Flame retardant formulations for cotton. Polym Degrad Stab 74:487–492CrossRef
Zurück zum Zitat Li X, Chen H, Wang W, Liu Y, Zhao P (2015) Synthesis of a formaldehyde-free phosphorus–nitrogen flame retardant with multiple reactive groups and its application in cotton fabrics. Polym Degrad Stab 120:193–202CrossRef Li X, Chen H, Wang W, Liu Y, Zhao P (2015) Synthesis of a formaldehyde-free phosphorus–nitrogen flame retardant with multiple reactive groups and its application in cotton fabrics. Polym Degrad Stab 120:193–202CrossRef
Zurück zum Zitat Li YZ, Wang BJ, Sui XF, Xie RY, Xu H, Zhang LP, Zhong Y, Mao ZP (2018) Durable flame retardant and antibacterial finishing on cotton fabrics with cyclotriphosphazene/polydopamine/silver nanoparticles hybrid coatings. Appl Surf Sci 435:1337–1343CrossRef Li YZ, Wang BJ, Sui XF, Xie RY, Xu H, Zhang LP, Zhong Y, Mao ZP (2018) Durable flame retardant and antibacterial finishing on cotton fabrics with cyclotriphosphazene/polydopamine/silver nanoparticles hybrid coatings. Appl Surf Sci 435:1337–1343CrossRef
Zurück zum Zitat Ling C, Guo L (2019) Fabrication of high Nano-ZnO doped with boric acid assembled on cotton fabric with flame retardant properties. Fibres Textiles Eastern Europe 4:65–70CrossRef Ling C, Guo L (2019) Fabrication of high Nano-ZnO doped with boric acid assembled on cotton fabric with flame retardant properties. Fibres Textiles Eastern Europe 4:65–70CrossRef
Zurück zum Zitat Ling C, Guo L (2020) Preparation of a flame-retardant coating based on solvent-free synthesis with high efficiency and durability on cotton fabric. Carbohyd Polym 230:115648CrossRef Ling C, Guo L (2020) Preparation of a flame-retardant coating based on solvent-free synthesis with high efficiency and durability on cotton fabric. Carbohyd Polym 230:115648CrossRef
Zurück zum Zitat Malucelli G, Bosco F, Alongi J, Carosio F, Di Blasio A, Mollea C et al (2014) Biomacromolecules as novel green flame retardant systems for textiles: an overview. RSC Adv 4:46024–46039CrossRef Malucelli G, Bosco F, Alongi J, Carosio F, Di Blasio A, Mollea C et al (2014) Biomacromolecules as novel green flame retardant systems for textiles: an overview. RSC Adv 4:46024–46039CrossRef
Zurück zum Zitat Pan HF, Wang W, Pan Y, Song L, Hu Y, Liew KM (2015) Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via Layer-by-Layer assembly of chitin derivatives. Carbohyd Polym 115:516–524CrossRef Pan HF, Wang W, Pan Y, Song L, Hu Y, Liew KM (2015) Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via Layer-by-Layer assembly of chitin derivatives. Carbohyd Polym 115:516–524CrossRef
Zurück zum Zitat Perelshtein I, Applerot G, Perkas N, Wehrschuetz-Sigl E, Hasmann A, Guebitz G et al (2009) CuO–cotton nanocomposite: formation, morphology, and antibacterial activity. Surf Coat Technol 204:54–57CrossRef Perelshtein I, Applerot G, Perkas N, Wehrschuetz-Sigl E, Hasmann A, Guebitz G et al (2009) CuO–cotton nanocomposite: formation, morphology, and antibacterial activity. Surf Coat Technol 204:54–57CrossRef
Zurück zum Zitat Price D, Horrocks AR, Akalin M, Faroq AA (1997) Influence of flame retardants on the mechanism of pyrolysis of cotton (cellulose) fabrics in air. J Anal Appl Pyrol 40:511–524CrossRef Price D, Horrocks AR, Akalin M, Faroq AA (1997) Influence of flame retardants on the mechanism of pyrolysis of cotton (cellulose) fabrics in air. J Anal Appl Pyrol 40:511–524CrossRef
Zurück zum Zitat Roshan P, Lorenzo B, Meritxelldela V, Josemaria B, Eudald C, Victor P et al (2010) Nano-cotton fabrics with high ultraviolet protection. Text Res J 79:454–462 Roshan P, Lorenzo B, Meritxelldela V, Josemaria B, Eudald C, Victor P et al (2010) Nano-cotton fabrics with high ultraviolet protection. Text Res J 79:454–462
Zurück zum Zitat Shariatinia Z, Javeri N, Shekarriz S (2015) Flame retardant cotton fibers produced using novel synthesized halogen-free phosphoramide nanoparticles. Carbohyd Polym 118:183–198CrossRef Shariatinia Z, Javeri N, Shekarriz S (2015) Flame retardant cotton fibers produced using novel synthesized halogen-free phosphoramide nanoparticles. Carbohyd Polym 118:183–198CrossRef
Zurück zum Zitat Wang C, Wu Y, Li Y, Shao Q, Yan X, Han C et al (2017) Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant. Polymers Adv Technol. Wang C, Wu Y, Li Y, Shao Q, Yan X, Han C et al (2017) Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant. Polymers Adv Technol.
Zurück zum Zitat Wang DF, Zhong L, Zhang C, Zhang FX, Zhang GX (2018) A novel reactive phosphorous flame retardant for cotton fabrics with durable flame retardancy and high whiteness due to self-buffering. Cellulose 25:5479–5497CrossRef Wang DF, Zhong L, Zhang C, Zhang FX, Zhang GX (2018) A novel reactive phosphorous flame retardant for cotton fabrics with durable flame retardancy and high whiteness due to self-buffering. Cellulose 25:5479–5497CrossRef
Zurück zum Zitat Weil ED (2004) Current practice and recent commercial developments in flame retardancy of polyamides. J Mater Sci 22:251–264 Weil ED (2004) Current practice and recent commercial developments in flame retardancy of polyamides. J Mater Sci 22:251–264
Zurück zum Zitat Wu W, Yang CQ (2007) Comparison of different reactive organophosphorus flame retardant agents for cotton. part ii: fabric flame resistant performance and physical properties. Polym Degrad Stab 92:363–369CrossRef Wu W, Yang CQ (2007) Comparison of different reactive organophosphorus flame retardant agents for cotton. part ii: fabric flame resistant performance and physical properties. Polym Degrad Stab 92:363–369CrossRef
Zurück zum Zitat Wu X, Yang CQ (2008) Flame retardant finishing of cotton fleece fabric. ii. inorganic phosphorus-containing compounds. J Appl Polym Sci 108:1582–1590CrossRef Wu X, Yang CQ (2008) Flame retardant finishing of cotton fleece fabric. ii. inorganic phosphorus-containing compounds. J Appl Polym Sci 108:1582–1590CrossRef
Zurück zum Zitat Xu B, Cai Z (2008) Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Appl Surf Sci 254:5899–5904CrossRef Xu B, Cai Z (2008) Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Appl Surf Sci 254:5899–5904CrossRef
Zurück zum Zitat Xu B, Cai ZS (2010) Trial-manufacture and UV-blocking property of ZnO nanorods on cotton fabrics. J Appl Polym Sci 108:3781–3786CrossRef Xu B, Cai ZS (2010) Trial-manufacture and UV-blocking property of ZnO nanorods on cotton fabrics. J Appl Polym Sci 108:3781–3786CrossRef
Zurück zum Zitat Yadav A, Prasad V, Kathe AA, Raj S, Yadav D, Sundaramoorthy C et al (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci 29:641–645CrossRef Yadav A, Prasad V, Kathe AA, Raj S, Yadav D, Sundaramoorthy C et al (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci 29:641–645CrossRef
Zurück zum Zitat Yang CQ, Wu W (2003) Combination of a hydroxy-functional organophosphorus oligomer and a multifunctional carboxylic acid as a flame retardant finishing system for cotton: part i. the chemical reactions. Fire Mater 27:223–237CrossRef Yang CQ, Wu W (2003) Combination of a hydroxy-functional organophosphorus oligomer and a multifunctional carboxylic acid as a flame retardant finishing system for cotton: part i. the chemical reactions. Fire Mater 27:223–237CrossRef
Zurück zum Zitat Zheng D, Zhou J, Wang Y, Zhang F, Zhang G (2017) A reactive flame retardant ammonium salt of diethylenetriaminepenta(methylene-phosphonic acid) for enhancing flame retardancy of cotton fabrics. Cellulose 25:1–11 Zheng D, Zhou J, Wang Y, Zhang F, Zhang G (2017) A reactive flame retardant ammonium salt of diethylenetriaminepenta(methylene-phosphonic acid) for enhancing flame retardancy of cotton fabrics. Cellulose 25:1–11
Metadaten
Titel
An eco-friendly and durable multifunctional cotton fabric incorporating ZnO and a branched polymer
verfasst von
Chao Ling
Lamei Guo
Publikationsdatum
14.04.2021
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 9/2021
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-03868-w

Weitere Artikel der Ausgabe 9/2021

Cellulose 9/2021 Zur Ausgabe