Skip to main content

2021 | OriginalPaper | Buchkapitel

An Efficient and Generic Construction for Signal’s Handshake (X3DH): Post-Quantum, State Leakage Secure, and Deniable

verfasst von : Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, Thomas Prest

Erschienen in: Public-Key Cryptography – PKC 2021

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Signal protocol is a secure instant messaging protocol that underlies the security of numerous applications such as WhatsApp, Skype, Facebook Messenger among many others. The Signal protocol consists of two sub-protocols known as the X3DH protocol and the double ratchet protocol, where the latter has recently gained much attention. For instance, Alwen, Coretti, and Dodis (Eurocrypt’19) provided a concrete security model along with a generic construction based on simple building blocks that are instantiable from versatile assumptions, including post-quantum ones. In contrast, as far as we are aware, works focusing on the X3DH protocol seem limited.
In this work, we cast the X3DH protocol as a specific type of authenticated key exchange (AKE) protocol, which we call a Signal-conforming AKE protocol, and formally define its security model based on the vast prior work on AKE protocols. We then provide the first efficient generic construction of a Signal-conforming AKE protocol based on standard cryptographic primitives such as key encapsulation mechanisms (KEM) and signature schemes. Specifically, this results in the first post-quantum secure replacement of the X3DH protocol on well-established assumptions. Similar to the X3DH protocol, our Signal-conforming AKE protocol offers a strong (or stronger) flavor of security, where the exchanged key remains secure even when all the non-trivial combinations of the long-term secrets and session-specific secrets are compromised. Moreover, our protocol has a weak flavor of deniability and we further show how to strengthen it using ring signatures. Finally, we provide a full-fledged, generic C implementation of our (weakly deniable) protocol. We instantiate it with several Round 3 candidates (finalists and alternates) to the NIST post-quantum standardization process and compare the resulting bandwidth and computation performances. Our implementation is publicly available.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The name Signal is used to point to the app and the protocol.
 
2
Although [45, Section 4.6] states that the X3DH protocol is susceptible to KCI attacks, this is only because they consider the scenario where the session-specific secret is compromised. If we consider the standard KCI attack scenario where the long-term secret is the only information being compromised [11], then the X3DH protocol is secure. .
 
3
Being vulnerable against KCI attacks seems to be intrinsic to on-line deniability [45, 51, 52].
 
4
The X3DH can be made secure against leakge of session-specific secrets by using NAXOS trick [42], but it requires additional computation. Because it affects efficiency, we do not consider AKE protocols using NAXOS trick (e.g., [30, 40, 56]).
 
5
It is available at the URL [41].
 
6
We assume Alice and Bob know each other’s long-term key. In practice, this can be enforced by “out-of-bound” authentications (see [45, Section 4.1]).
 
7
In the actual protocol, Alice also signs \(g^x\) sent to the server (i.e., signed pre-keys). We ignore this subtlety as it does not play a crucial role in the analysis of security. See Remark 4.2 for more detail. Also, we note that in practice, Bob may initiate the double ratchet protocol using \(\mathsf {k}_\mathsf {B} \) and send his message to Alice along with \(g^y\) to the server before Alice responds. .
 
8
This property has also been called as post-specified peers [16] in the context of Internet Key Exchange (IKE) protocols.
 
9
As we briefly commented in Footnote 10, Alice can sign her message \(\mathsf {ek}_T\) as in the X3DH protocol. This will only make our protocol more secure. See Remark 4.2 for more detail.
 
10
Looking ahead, when the first message is independent of party \(P_j\) (i.e., \(\mathcal {C}\) can first create the first message without knowledge of \(P_j\) and then set \(\mathsf {Pid}^s_i := j\)), we call the scheme receiver oblivious. See Sect. 3.4 for more details.
 
11
Note that by definition, the peer id \(\mathsf {Pid}_i^s\) of a tested oracle \(\pi ^s_i\) is always defined.
 
12
This property has also been called as post-specified peers [16] in the context of Internet Key Exchange (IKE) protocols.
 
13
To prove the security of \(\varPi _\mathsf {SC\text {-}AKE}\), we require \(\varPi _\mathsf {KEM}\) and \(\varPi _\mathsf{wKEM}\) to have high min-entropy of the encapsulation key and the ciphertext.
 
14
Notice the protocol is receiver oblivious since the first message is computed independently of the receiver.
 
17
The X3DH protocol assumes the parties authenticate the long-term public keys through some authenticated channel [45, Section 4.1].
 
18
The results for all 128 instantiations can be found at the URL [41].
 
19
Although in [24, Definition 2], \(\mathsf {aux}\) is defined as fixed information that \(\mathcal {M}\) cannot adaptively choose, we observe that in their proof they implicitly assume that \(\mathsf {aux}\) is sampled adaptively from some distribution dependent on \((\mathsf {pp}, \overrightarrow{\mathsf {lpk}}, \overrightarrow{\mathsf {lsk}})\). Such a definition of \(\mathsf {aux}\) is necessary to invoke PA-2 security of the underlying encryption scheme.
 
20
Due to the page limitation, the formal definitions of these tools are provided in the full version.
 
21
Similar to \(\varPi _\mathsf {SC\text {-}AKE}\), to prove the security of \(\varPi _\mathsf {SC\text {-}DAKE}\), we require \(\varPi _\mathsf {KEM}\) and \(\varPi _\mathsf{wKEM}\) to have high min-entropy of the encapsulation key and the ciphertext.
 
22
Notice the protocol is receiver oblivious since the first message is computed independently of the receiver.
 
23
This guarantees that the witness from a proof can be extracted without rewinding the adversary.
 
24
We note that this is redundant since it is implicitly implied by the key-awareness assumption. We only include it for clarity.
 
Literatur
4.
Zurück zum Zitat Bellare, M.: New proofs for NMAC and HMAC: security without collision-resistance. Cryptology ePrint Archive, Report 2006/043 Bellare, M.: New proofs for NMAC and HMAC: security without collision-resistance. Cryptology ePrint Archive, Report 2006/043
14.
Zurück zum Zitat Brendel, J., Fischlin, M., Günther, F., Janson, C., Stebila, D.: Towards post-quantum security for signal’s X3DH handshake. In: SAC 2020 Brendel, J., Fischlin, M., Günther, F., Janson, C., Stebila, D.: Towards post-quantum security for signal’s X3DH handshake. In: SAC 2020
18.
Zurück zum Zitat Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal security analysis of the signal messaging protocol. In: IEEE European Symposium on Security and Privacy (EuroS&P), pp. 451–466 Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal security analysis of the signal messaging protocol. In: IEEE European Symposium on Security and Privacy (EuroS&P), pp. 451–466
19.
Zurück zum Zitat Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal security analysis of the signal messaging protocol. J. Cryptol. 1–70 Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal security analysis of the signal messaging protocol. J. Cryptol. 1–70
22.
Zurück zum Zitat de Kock, B., Gjøsteen, K., Veroni, M.: Practical isogeny-based key-exchange with optimal tightness. In: SAC 2020 de Kock, B., Gjøsteen, K., Veroni, M.: Practical isogeny-based key-exchange with optimal tightness. In: SAC 2020
23.
Zurück zum Zitat de Saint Guilhem, C.D., Fischlin, M., Warinschi, B.: Authentication in key-exchange: definitions, relations and composition. In: 2020 IEEE 33rd Computer Security Foundations Symposium (CSF), pp. 288–303 de Saint Guilhem, C.D., Fischlin, M., Warinschi, B.: Authentication in key-exchange: definitions, relations and composition. In: 2020 IEEE 33rd Computer Security Foundations Symposium (CSF), pp. 288–303
24.
Zurück zum Zitat Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and key exchange. In: ACM CCS, pp. 400–409 (2006) Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and key exchange. In: ACM CCS, pp. 400–409 (2006)
28.
Zurück zum Zitat Fouque, P.-A., Pointcheval, D., Zimmer, S.: HMAC is a randomness extractor and applications to TLS. In: ASIACCS 2008, pp. 21–32 Fouque, P.-A., Pointcheval, D., Zimmer, S.: HMAC is a randomness extractor and applications to TLS. In: ASIACCS 2008, pp. 21–32
31.
Zurück zum Zitat Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum authenticated key exchange from one-way secure key encapsulation mechanism. In: ASIACCS 2013, pp. 83–94 Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum authenticated key exchange from one-way secure key encapsulation mechanism. In: ASIACCS 2013, pp. 83–94
35.
Zurück zum Zitat Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key exchange, revisited. Cryptology ePrint Archive, Report 2020/1279 Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key exchange, revisited. Cryptology ePrint Archive, Report 2020/1279
40.
Zurück zum Zitat Kurosawa, K., Furukawa, J.: 2-pass key exchange protocols from CPA-secure KEM. In: CT-RSA, pp. 385–401 (2014) Kurosawa, K., Furukawa, J.: 2-pass key exchange protocols from CPA-secure KEM. In: CT-RSA, pp. 385–401 (2014)
43.
Zurück zum Zitat Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining trivial attacks for security protocols is not trivial. In: ACM CCS, pp. 1343–1360 (2017) Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining trivial attacks for security protocols is not trivial. In: ACM CCS, pp. 1343–1360 (2017)
47.
Zurück zum Zitat Paquin, C., Stebila, D., Tamvada, G.: Benchmarking post-quantum cryptography in TLS. Cryptology ePrint Archive, Report 2019/1447 Paquin, C., Stebila, D., Tamvada, G.: Benchmarking post-quantum cryptography in TLS. Cryptology ePrint Archive, Report 2019/1447
51.
Zurück zum Zitat Unger, N., Goldberg, I.: Deniable key exchanges for secure messaging. In: ACM CCS, pp. 1211–1223 (2015) Unger, N., Goldberg, I.: Deniable key exchanges for secure messaging. In: ACM CCS, pp. 1211–1223 (2015)
52.
Zurück zum Zitat Unger, N., Goldberg, I.: Improved strongly deniable authenticated key exchanges for secure messaging. PoPETs 1, 21–66 (2018) Unger, N., Goldberg, I.: Improved strongly deniable authenticated key exchanges for secure messaging. PoPETs 1, 21–66 (2018)
54.
Zurück zum Zitat Xue, H., Au, M.H., Yang, R., Liang, B., Jiang, H.: Compact authenticated key exchange in the quantum random oracle model. Cryptology ePrint Archive, Report 2020/1282 Xue, H., Au, M.H., Yang, R., Liang, B., Jiang, H.: Compact authenticated key exchange in the quantum random oracle model. Cryptology ePrint Archive, Report 2020/1282
56.
Zurück zum Zitat Yang, Z., Chen, Y., Luo, S.: Two-message key exchange with strong security from ideal lattices. In: CT-RSA, pp. 98–115 (2018) Yang, Z., Chen, Y., Luo, S.: Two-message key exchange with strong security from ideal lattices. In: CT-RSA, pp. 98–115 (2018)
Metadaten
Titel
An Efficient and Generic Construction for Signal’s Handshake (X3DH): Post-Quantum, State Leakage Secure, and Deniable
verfasst von
Keitaro Hashimoto
Shuichi Katsumata
Kris Kwiatkowski
Thomas Prest
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-75248-4_15