Skip to main content
Erschienen in: Telecommunication Systems 1/2022

10.11.2021

An efficient and secure cipher scheme for MIMO–OFDM systems based on physical layer security

verfasst von: Reem Melki, Hassan N. Noura, Ali Chehab

Erschienen in: Telecommunication Systems | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multiple-input multiple-output orthogonal frequency division multiplexing (MIMO–OFDM) is, currently, the most dominant air interface for wireless communications, and the basic foundation for many network standards, due to its practicality and efficiency at high data speeds. Specifically, this system combines the MIMO and OFDM technologies, to achieve maximum capacity, reliability and throughput. On the other hand, achieving data confidentiality over wireless links in MIMO–OFDM systems, remains a pressing issue that should be tackled. In this paper, we propose an efficient and secure cipher scheme for MIMO–OFDM systems, based on the randomness and dynamicity of the physical layer. In particular, a channel-based parameter, which is extracted from the shared wireless channel, is combined with a secret key, only known to the communicating devices, to generate a dynamic key. This key is, then, used to derive two simple cipher primitives, which are a masking sequence and a permutation table. Both of these cipher primitives are updated frequently to enhance the security and robustness of transmitted data and prevent attacks. The proposed solution is considered very efficient and lightweight since it consists of simple operations, mainly, addition and permutation. Moreover, the proposed solution takes into consideration the OFDM frame symbol length, which can be fixed or varying from one antenna to another. Therefore, the proposed solution consists of two cipher variants, one secures OFDM symbols having the same length (same number of modulation symbols) and the other secures OFDM symbols that have different lengths on different antennas. Finally, several security and performance tests are conducted to prove the efficiency and robustness of the proposed solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sharma, V., & Kaur, H. (2016). On BER evaluation of MIMO–OFDM incorporated wireless system. Optik-International Journal for Light and Electron Optics, 127(1), 203–205.CrossRef Sharma, V., & Kaur, H. (2016). On BER evaluation of MIMO–OFDM incorporated wireless system. Optik-International Journal for Light and Electron Optics, 127(1), 203–205.CrossRef
2.
Zurück zum Zitat Melki, R., Noura, H., Mansour, M., & Chehab, A. (2019). A survey on OFDM physical layer security. Physical Communication, 32, 1–30.CrossRef Melki, R., Noura, H., Mansour, M., & Chehab, A. (2019). A survey on OFDM physical layer security. Physical Communication, 32, 1–30.CrossRef
3.
Zurück zum Zitat Hamamreh, J. M., Furqan, H. M., & Arslan, H. (2018). Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey. IEEE Communications Surveys & Tutorials, 21(2), 1773–1828.CrossRef Hamamreh, J. M., Furqan, H. M., & Arslan, H. (2018). Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey. IEEE Communications Surveys & Tutorials, 21(2), 1773–1828.CrossRef
4.
Zurück zum Zitat Tsoulos, G. (2006). MIMO system technology for wireless communications. CRC Press. Tsoulos, G. (2006). MIMO system technology for wireless communications. CRC Press.
5.
Zurück zum Zitat Sivakrishna, S., & Yarrabothu, R. (2018). Design and simulation of 5G massive MIMO kernel algorithm on SIMD vector processor. In Conference on signal processing and communication engineering systems (SPACES) (pp. 53–57). IEEE. Sivakrishna, S., & Yarrabothu, R. (2018). Design and simulation of 5G massive MIMO kernel algorithm on SIMD vector processor. In Conference on signal processing and communication engineering systems (SPACES) (pp. 53–57). IEEE.
6.
Zurück zum Zitat Melki, R., Noura, H., Mansour, M., & Chehab, A. (2020). Physical layer security schemes for MIMO systems: An overview. Wireless Networks, 26(3), 2089–2111.CrossRef Melki, R., Noura, H., Mansour, M., & Chehab, A. (2020). Physical layer security schemes for MIMO systems: An overview. Wireless Networks, 26(3), 2089–2111.CrossRef
7.
Zurück zum Zitat Kapetanovicn, D., Zheng, G., & Rusek, F. (2015). Physical layer security for massive MIMO: An overview on passive eavesdropping and active attacks. IEEE Communications Magazine, 53(6), 21–27.CrossRef Kapetanovicn, D., Zheng, G., & Rusek, F. (2015). Physical layer security for massive MIMO: An overview on passive eavesdropping and active attacks. IEEE Communications Magazine, 53(6), 21–27.CrossRef
8.
Zurück zum Zitat Chen, X., Lei, L., Zhang, H., & Yuen, C. (2015). Large-scale MIMO relaying techniques for physical layer security: AF or DF? IEEE Transactions on Wireless Communications, 14(9), 5135–5146.CrossRef Chen, X., Lei, L., Zhang, H., & Yuen, C. (2015). Large-scale MIMO relaying techniques for physical layer security: AF or DF? IEEE Transactions on Wireless Communications, 14(9), 5135–5146.CrossRef
9.
Zurück zum Zitat Deng, Y., Wang, L., Wong, K. K., Nallanathan, A., Elkashlan, M., & Lambotharan, S. (2015). Safeguarding massive MIMO aided hetnets using physical layer security. In International conference on wireless communications signal processing (WCSP) (pp. 1–5). Deng, Y., Wang, L., Wong, K. K., Nallanathan, A., Elkashlan, M., & Lambotharan, S. (2015). Safeguarding massive MIMO aided hetnets using physical layer security. In International conference on wireless communications signal processing (WCSP) (pp. 1–5).
10.
Zurück zum Zitat Yang, Q., Wang, H., Zhang, Y., & Han, Z. (2016). Physical layer security in MIMO backscatter wireless systems. IEEE Transactions on Wireless Communications, 15(11), 7547–7560.CrossRef Yang, Q., Wang, H., Zhang, Y., & Han, Z. (2016). Physical layer security in MIMO backscatter wireless systems. IEEE Transactions on Wireless Communications, 15(11), 7547–7560.CrossRef
11.
Zurück zum Zitat Schulz, M., Loch, A., & Hollick, M. (2014). Practical known-plaintext attacks against physical layer security in wireless MIMO systems. In NDSS Schulz, M., Loch, A., & Hollick, M. (2014). Practical known-plaintext attacks against physical layer security in wireless MIMO systems. In NDSS
12.
Zurück zum Zitat Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Di Renzo, M. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine, 53(4), 20–27.CrossRef Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Di Renzo, M. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine, 53(4), 20–27.CrossRef
13.
Zurück zum Zitat Chen, X., Zhong, C., Yuen, C., & Chen, H. H. (2015). Multi-antenna relay aided wireless physical layer security. IEEE Communications Magazine, 53(12), 40–46.CrossRef Chen, X., Zhong, C., Yuen, C., & Chen, H. H. (2015). Multi-antenna relay aided wireless physical layer security. IEEE Communications Magazine, 53(12), 40–46.CrossRef
14.
Zurück zum Zitat Poor, H., & Schaefer, R. (2017). Wireless physical layer security. Proceedings of the National Academy of Sciences, 114(1), 19–26.CrossRef Poor, H., & Schaefer, R. (2017). Wireless physical layer security. Proceedings of the National Academy of Sciences, 114(1), 19–26.CrossRef
15.
Zurück zum Zitat Maharaja, N., Mishra, B., & Bansode, R. (2016). Performance evaluation of spatial multiplexing MIMO–OFDM system using MMSE detection under frequency selective Rayleigh channel. Global Journal of Computer Science and Technology, 15, 27–33. Maharaja, N., Mishra, B., & Bansode, R. (2016). Performance evaluation of spatial multiplexing MIMO–OFDM system using MMSE detection under frequency selective Rayleigh channel. Global Journal of Computer Science and Technology, 15, 27–33.
16.
Zurück zum Zitat Omri, A., & Bouallegue, R. (2011). New transmission scheme for MIMO–OFDM. International Journal of Next Generation Network, 3(1), 11–19.CrossRef Omri, A., & Bouallegue, R. (2011). New transmission scheme for MIMO–OFDM. International Journal of Next Generation Network, 3(1), 11–19.CrossRef
17.
Zurück zum Zitat Lee, Y., Jo, H., Ko, Y., & Choi, J. (2017). Secure index and data symbol modulation for OFDM-IM. IEEE Access, 5, 24959–24974.CrossRef Lee, Y., Jo, H., Ko, Y., & Choi, J. (2017). Secure index and data symbol modulation for OFDM-IM. IEEE Access, 5, 24959–24974.CrossRef
18.
Zurück zum Zitat Hamamreh, J. M., Basar, E., & Arslan, H. (2017). OFDM-subcarrier index selection for enhancing security and reliability of 5G URLLC services. IEEE Access, 5, 25863–25875.CrossRef Hamamreh, J. M., Basar, E., & Arslan, H. (2017). OFDM-subcarrier index selection for enhancing security and reliability of 5G URLLC services. IEEE Access, 5, 25863–25875.CrossRef
19.
Zurück zum Zitat Zhang, J., Marshall, A., Woods, R., & Duong, T. (2017). Design of an OFDM physical layer encryption scheme. IEEE Transactions on Vehicular Technology, 66(3), 2114–2127.CrossRef Zhang, J., Marshall, A., Woods, R., & Duong, T. (2017). Design of an OFDM physical layer encryption scheme. IEEE Transactions on Vehicular Technology, 66(3), 2114–2127.CrossRef
20.
Zurück zum Zitat Hamamreh, J. M., & Arslan, H. (2017). Secure orthogonal transform division multiplexing (OTDM) waveform for 5G and beyond. IEEE Communications Letters, 21(5), 1191–1194.CrossRef Hamamreh, J. M., & Arslan, H. (2017). Secure orthogonal transform division multiplexing (OTDM) waveform for 5G and beyond. IEEE Communications Letters, 21(5), 1191–1194.CrossRef
21.
Zurück zum Zitat Cheng, D., Gao, Z., Liu, F., & Liao, X. (2015). A general time-domain artificial noise design for OFDM AF relay systems. In Proceedings of IEEE/CIC international conference on communications in China (ICCC), Shenzhen, China, November (pp. 1–6). Cheng, D., Gao, Z., Liu, F., & Liao, X. (2015). A general time-domain artificial noise design for OFDM AF relay systems. In Proceedings of IEEE/CIC international conference on communications in China (ICCC), Shenzhen, China, November (pp. 1–6).
22.
Zurück zum Zitat Akitaya, T., & Saba, T. (2015). Energy efficient artificial fast fading for MISO–OFDM systems. In Proceedings of IEEE global communications conference (GLOBECOM), San Diego, CA, USA, December (pp. 1–6). Akitaya, T., & Saba, T. (2015). Energy efficient artificial fast fading for MISO–OFDM systems. In Proceedings of IEEE global communications conference (GLOBECOM), San Diego, CA, USA, December (pp. 1–6).
23.
Zurück zum Zitat Rahbari, H., & Krunz, M. (2017). Exploiting frame preamble waveforms to support new physical-layer functions in OFDM-based 802.11 systems. IEEE Transactions on Wireless Communications, 16(6), 3775–3786.CrossRef Rahbari, H., & Krunz, M. (2017). Exploiting frame preamble waveforms to support new physical-layer functions in OFDM-based 802.11 systems. IEEE Transactions on Wireless Communications, 16(6), 3775–3786.CrossRef
24.
Zurück zum Zitat Zhang, W., Zhang, C., Chen, C., Jin, W., & Qiu, K. (2016). Joint PAPR reduction and physical layer security enhancement in OFDMA-PON. IEEE Photonics Technology Letters, 28(9), 998–1001. Zhang, W., Zhang, C., Chen, C., Jin, W., & Qiu, K. (2016). Joint PAPR reduction and physical layer security enhancement in OFDMA-PON. IEEE Photonics Technology Letters, 28(9), 998–1001.
25.
Zurück zum Zitat Xiao, Y., Chen, M., Li, F., Tang, J., Liu, Y., & Chen, L. (2015). PAPR reduction based on chaos combined with SLM technique in optical OFDM IM/DD system. Optical Fiber Technology, 21, 81–86.CrossRef Xiao, Y., Chen, M., Li, F., Tang, J., Liu, Y., & Chen, L. (2015). PAPR reduction based on chaos combined with SLM technique in optical OFDM IM/DD system. Optical Fiber Technology, 21, 81–86.CrossRef
26.
Zurück zum Zitat Lim, D., No, J., Lim, C., & Chung, H. (2005). A new SLM OFDM scheme with low complexity for PAPR reduction. IEEE Signal Processing Letters, 12(2), 93–96.CrossRef Lim, D., No, J., Lim, C., & Chung, H. (2005). A new SLM OFDM scheme with low complexity for PAPR reduction. IEEE Signal Processing Letters, 12(2), 93–96.CrossRef
27.
Zurück zum Zitat Tsai, Y., Tai, C., Yang, K. (2014). Effective channel perturbation based on cyclic delay for physical layer security in OFDM systems. In Proceedings of international conference on information science, electronics and electrical engineering (ISEEE), Sapporo, Japan, April 2014 (Vol. 2, pp. 823–827). Tsai, Y., Tai, C., Yang, K. (2014). Effective channel perturbation based on cyclic delay for physical layer security in OFDM systems. In Proceedings of international conference on information science, electronics and electrical engineering (ISEEE), Sapporo, Japan, April 2014 (Vol. 2, pp. 823–827).
28.
Zurück zum Zitat Hamamreh, J. M., Furqan, H., & Arslan, H. (2017). Secure pre-coding and post-coding for OFDM systems along with hardware implementation. In Proceedings of IEEE international wireless communications and mobile computing conference (IWCMC), Valencia, Spain, June 2017 (pp. 1338–1343). Hamamreh, J. M., Furqan, H., & Arslan, H. (2017). Secure pre-coding and post-coding for OFDM systems along with hardware implementation. In Proceedings of IEEE international wireless communications and mobile computing conference (IWCMC), Valencia, Spain, June 2017 (pp. 1338–1343).
29.
Zurück zum Zitat Li, H., Wang, X., & Zou, Y. (2014). Dynamic subcarrier coordinate interleaving for eavesdropping prevention in OFDM systems. IEEE Communications Letters, 18(6), 1059–1062.CrossRef Li, H., Wang, X., & Zou, Y. (2014). Dynamic subcarrier coordinate interleaving for eavesdropping prevention in OFDM systems. IEEE Communications Letters, 18(6), 1059–1062.CrossRef
30.
Zurück zum Zitat Zhang, B., Zhan, Q., Chen, S., Li, M., Ren, K., Wang, C., & Ma, D. (2014). Priwhisper: Enabling keyless secure acoustic communication for smartphones. IEEE Internet Of Things Journal, 1(1), 33–45.CrossRef Zhang, B., Zhan, Q., Chen, S., Li, M., Ren, K., Wang, C., & Ma, D. (2014). Priwhisper: Enabling keyless secure acoustic communication for smartphones. IEEE Internet Of Things Journal, 1(1), 33–45.CrossRef
31.
Zurück zum Zitat Huo, F., & Gong, G. (2014). A new efficient physical layer OFDM encryption scheme. In Proceedings of IEEE international conference on computer communications (INFOCOM), Toronto, ON, Canada, April 2014 (pp. 1024–1032). Huo, F., & Gong, G. (2014). A new efficient physical layer OFDM encryption scheme. In Proceedings of IEEE international conference on computer communications (INFOCOM), Toronto, ON, Canada, April 2014 (pp. 1024–1032).
32.
Zurück zum Zitat Wang, Y., & Zhang, L. (2017). High security orthogonal factorized channel scrambling scheme with location information embedded for MIMO-based VLC system. In 2017 IEEE 85th vehicular technology conference (VTC Spring), June 2017 (pp. 1–5). Wang, Y., & Zhang, L. (2017). High security orthogonal factorized channel scrambling scheme with location information embedded for MIMO-based VLC system. In 2017 IEEE 85th vehicular technology conference (VTC Spring), June 2017 (pp. 1–5).
33.
Zurück zum Zitat Tanigawa, Y., Kozai, Y., & Saba, T. (2017). A physical layer security scheme employing imaginary receiver for multiuser MIMO–OFDM systems. In Proceedings of IEEE international conference on communications (ICC), May 2017 (pp. 1–6). Tanigawa, Y., Kozai, Y., & Saba, T. (2017). A physical layer security scheme employing imaginary receiver for multiuser MIMO–OFDM systems. In Proceedings of IEEE international conference on communications (ICC), May 2017 (pp. 1–6).
34.
Zurück zum Zitat Ahmed, M., & Bai, L. (2017). Space time block coding aided physical layer security in Gaussian MIMO channels. In International Bhurban conference on applied sciences and technology (IBCAST), January 2017 (pp. 805–808). Ahmed, M., & Bai, L. (2017). Space time block coding aided physical layer security in Gaussian MIMO channels. In International Bhurban conference on applied sciences and technology (IBCAST), January 2017 (pp. 805–808).
35.
Zurück zum Zitat Chen, X., & Zhang, Y. (2017). Mode selection in MU-MIMO downlink networks: A physical-layer security perspective. IEEE Systems Journal, 11(2), 1128–1136.CrossRef Chen, X., & Zhang, Y. (2017). Mode selection in MU-MIMO downlink networks: A physical-layer security perspective. IEEE Systems Journal, 11(2), 1128–1136.CrossRef
36.
Zurück zum Zitat Zhang, Y., Liang, T., & Sun, A. (2015). Joint transmit antenna selection and jamming for security enhancement in MIMO wiretap channels. In IEEE proceedings of international conference on communications, China (ICCC), November 2015 (pp. 1–6). Zhang, Y., Liang, T., & Sun, A. (2015). Joint transmit antenna selection and jamming for security enhancement in MIMO wiretap channels. In IEEE proceedings of international conference on communications, China (ICCC), November 2015 (pp. 1–6).
37.
Zurück zum Zitat Li, G., & Hu, A. (2016). Virtual MIMO-based cooperative beamforming and jamming scheme for the clustered wireless sensor network security. In IEEE proceedings of international conference on communications, China (ICCC), October 2016 (pp. 2246–2250). Li, G., & Hu, A. (2016). Virtual MIMO-based cooperative beamforming and jamming scheme for the clustered wireless sensor network security. In IEEE proceedings of international conference on communications, China (ICCC), October 2016 (pp. 2246–2250).
38.
Zurück zum Zitat Fan, Y., Liao, X., & Vasilakos, A. V. (2017). Physical layer security based on interference alignment in K-User MIMO Y wiretap channels. IEEE Access, 5, 5747–5759.CrossRef Fan, Y., Liao, X., & Vasilakos, A. V. (2017). Physical layer security based on interference alignment in K-User MIMO Y wiretap channels. IEEE Access, 5, 5747–5759.CrossRef
39.
Zurück zum Zitat Melki, R., Noura, H. N., Mansour, M. M., & Chehab, A. (2018). An efficient OFDM-based encryption scheme using a dynamic key approach. IEEE Internet of Things Journal, 6, 361–378.CrossRef Melki, R., Noura, H. N., Mansour, M. M., & Chehab, A. (2018). An efficient OFDM-based encryption scheme using a dynamic key approach. IEEE Internet of Things Journal, 6, 361–378.CrossRef
40.
Zurück zum Zitat Noura, H., Melki, R., Chehab, A., & Mansour, M. M. (2018). A physical encryption scheme for low-power wireless M2M devices: A dynamic key approach. Mobile Networks and Applications, 24, 1–17. Noura, H., Melki, R., Chehab, A., & Mansour, M. M. (2018). A physical encryption scheme for low-power wireless M2M devices: A dynamic key approach. Mobile Networks and Applications, 24, 1–17.
41.
Zurück zum Zitat Noura, H., Melki, R., Chehab, A., Mansour, M. M., & Martin, S. (2018). Efficient and secure physical encryption scheme for low-power wireless M2M devices. In IWCMC security symposium, Limassol, Cyprus, June. Noura, H., Melki, R., Chehab, A., Mansour, M. M., & Martin, S. (2018). Efficient and secure physical encryption scheme for low-power wireless M2M devices. In IWCMC security symposium, Limassol, Cyprus, June.
42.
Zurück zum Zitat Noura, H., Chehab, A., Sleem, L., Noura, M., Couturier, R., & Mansour, M. M. (2018). One round cipher algorithm for multimedia IoT devices. Multimedia Tools and Applications, 77(14), 18383–18413.CrossRef Noura, H., Chehab, A., Sleem, L., Noura, M., Couturier, R., & Mansour, M. M. (2018). One round cipher algorithm for multimedia IoT devices. Multimedia Tools and Applications, 77(14), 18383–18413.CrossRef
43.
Zurück zum Zitat Guo, J., Peyrin, T., & Poschmann, A. (2011). The photon family of lightweight hash functions. In Annual cryptology conference (pp. 222–239). Springer. Guo, J., Peyrin, T., & Poschmann, A. (2011). The photon family of lightweight hash functions. In Annual cryptology conference (pp. 222–239). Springer.
44.
Zurück zum Zitat Guo, J., Peyrin, T., Poschmann, A., & Robshaw, M. (2011). The led block cipher. In International workshop on cryptographic hardware and embedded systems (pp. 326–341). Springer. Guo, J., Peyrin, T., Poschmann, A., & Robshaw, M. (2011). The led block cipher. In International workshop on cryptographic hardware and embedded systems (pp. 326–341). Springer.
45.
Zurück zum Zitat Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., & Wingers, L. (2015). Simon and speck: Block ciphers for the internet of things. IACR Cryptology ePrint Archive, 2015, 585. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., & Wingers, L. (2015). Simon and speck: Block ciphers for the internet of things. IACR Cryptology ePrint Archive, 2015, 585.
46.
Zurück zum Zitat Heron, S. (2009). Advanced encryption standard (AES). Network Security, 2009(12), 8–12.CrossRef Heron, S. (2009). Advanced encryption standard (AES). Network Security, 2009(12), 8–12.CrossRef
Metadaten
Titel
An efficient and secure cipher scheme for MIMO–OFDM systems based on physical layer security
verfasst von
Reem Melki
Hassan N. Noura
Ali Chehab
Publikationsdatum
10.11.2021
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 1/2022
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-021-00853-3

Weitere Artikel der Ausgabe 1/2022

Telecommunication Systems 1/2022 Zur Ausgabe

Neuer Inhalt