Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

29.06.2022

An Efficient Android Malware Detection Using Adaptive Red Fox Optimization Based CNN

verfasst von: P. C. Senthil Mahesh, S. Hemalatha

Erschienen in: Wireless Personal Communications

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Android smartphones are employed widely due to its flexible programming system with several user-oriented features in daily lives. With the substantial growth rate of smartphone technologies, cyber-attack against such devices has surged at an exponential rate. Majority of the smartphone users grant permission blindly to various arbitrary applications and hence it weakens the efficiency of the authorization mechanism. Numerous approaches were established in effective malware detection, but due to certain limitations like low identification rate, low malware detection rate as well as category detection, the results obtained are ineffective. Therefore, this paper proposes a convolutional neural network based adaptive red fox optimization (CNN-ARFO) approach to detect the malware applications as benign or malware. The proposed approach comprising of three different phases namely the pre-processing phase, feature extraction phase and the detection phase for the effective detection of android malware applications. In the pre-processing phase, the selected dataset utilizes Minmax technique to normalize the features. Then the malicious APK and the collected benign apps are investigated to identify and extract the essential features for the proper functioning of malware in the extraction phase. Finally, the android mobile applications are detected using CNN based ARFO approach. Then the results based on detecting the benign and malicious applications from the android mobiles are demonstrated by evaluating certain parameters like model accuracy rate, model loss rate, accuracy, precision, recall and f-measure. The resulting outcome revealed that the detection accuracy achieved by the proposed approach is 97.29%.
Literatur
1.
Zurück zum Zitat Syrris, V., & Geneiatakis, D. (2021). On machine learning effectiveness for malware detection in android OS using static analysis data. Journal of Information Security and Applications, 59, 102794. CrossRef Syrris, V., & Geneiatakis, D. (2021). On machine learning effectiveness for malware detection in android OS using static analysis data. Journal of Information Security and Applications, 59, 102794. CrossRef
2.
Zurück zum Zitat Cai, L., Li, Y., & Xiong, Z. (2021). JOWMDroid: Android malware detection based on feature weighting with joint optimization of weight-mapping and classifier parameters. Computers & Security, 100, 102086. CrossRef Cai, L., Li, Y., & Xiong, Z. (2021). JOWMDroid: Android malware detection based on feature weighting with joint optimization of weight-mapping and classifier parameters. Computers & Security, 100, 102086. CrossRef
3.
Zurück zum Zitat Ren, Z., Haomin, Wu., Ning, Q., Hussain, I., & Chen, B. (2020). End-to-end malware detection for android IoT devices using deep learning. Ad Hoc Networks, 101, 102098. CrossRef Ren, Z., Haomin, Wu., Ning, Q., Hussain, I., & Chen, B. (2020). End-to-end malware detection for android IoT devices using deep learning. Ad Hoc Networks, 101, 102098. CrossRef
4.
Zurück zum Zitat Bhatia, T., & Kaushal R. (2017). Malware detection in android based on dynamic analysis. In 2017 International conference on cyber security and protection of digital services ( Cyber security) (pp. 1–6). IEEE. Bhatia, T., & Kaushal R. (2017). Malware detection in android based on dynamic analysis. In 2017 International conference on cyber security and protection of digital services ( Cyber security) (pp. 1–6). IEEE.
5.
Zurück zum Zitat Zhou, Q., Feng, F., Shen, Z., Zhou, R., Hsieh, M.-Y., & Li, K.-C. (2019). A novel approach for mobile malware classification and detection in Android systems. Multimedia Tools and Applications, 78(3), 3529–3552. CrossRef Zhou, Q., Feng, F., Shen, Z., Zhou, R., Hsieh, M.-Y., & Li, K.-C. (2019). A novel approach for mobile malware classification and detection in Android systems. Multimedia Tools and Applications, 78(3), 3529–3552. CrossRef
6.
Zurück zum Zitat Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2020). DL-Droid: Deep learning based android malware detection using real devices. Computers & Security, 89, 101663. CrossRef Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2020). DL-Droid: Deep learning based android malware detection using real devices. Computers & Security, 89, 101663. CrossRef
7.
Zurück zum Zitat Sundararaj, V. (2016). An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm. Intenational Journal of Intelligent Engineering and Systems, 9(3), 117–126. CrossRef Sundararaj, V. (2016). An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm. Intenational Journal of Intelligent Engineering and Systems, 9(3), 117–126. CrossRef
8.
Zurück zum Zitat Sundararaj, V., Anoop, V., Dixit, P., Arjaria, A., Chourasia, U., Bhambri, P., Rejeesh, M. R., & Sundararaj, R. (2020). CCGPA-MPPT: Cauchy preferential crossover-based global pollination algorithm for MPPT in photovoltaic system. Progress in Photovoltaics Research and Applications, 28(11), 1128–1145. CrossRef Sundararaj, V., Anoop, V., Dixit, P., Arjaria, A., Chourasia, U., Bhambri, P., Rejeesh, M. R., & Sundararaj, R. (2020). CCGPA-MPPT: Cauchy preferential crossover-based global pollination algorithm for MPPT in photovoltaic system. Progress in Photovoltaics Research and Applications, 28(11), 1128–1145. CrossRef
9.
Zurück zum Zitat Vinu, S. (2019). Optimal task assignment in mobile cloud computing by queue based ant-bee algorithm. Wireless Personal Communications, 104(1), 173–197. CrossRef Vinu, S. (2019). Optimal task assignment in mobile cloud computing by queue based ant-bee algorithm. Wireless Personal Communications, 104(1), 173–197. CrossRef
10.
Zurück zum Zitat Sundararaj, V., Muthukumar, S., & Kumar, R. S. (2018). An optimal cluster formation based energy efficient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks. Computers & Security, 77, 277–288. CrossRef Sundararaj, V., Muthukumar, S., & Kumar, R. S. (2018). An optimal cluster formation based energy efficient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks. Computers & Security, 77, 277–288. CrossRef
11.
Zurück zum Zitat Rejeesh, M. R. (2019). Interest point based face recognition using adaptive neuro fuzzy inference system. Multimedia Tools and Applications, 78(16), 22691–22710. CrossRef Rejeesh, M. R. (2019). Interest point based face recognition using adaptive neuro fuzzy inference system. Multimedia Tools and Applications, 78(16), 22691–22710. CrossRef
12.
Zurück zum Zitat Kavitha, D., & Ravikumar, S. (2021). IOT and context-aware learning-based optimal neural network model for real-time health monitoring. Transactions on Emerging Telecommunications Technologies, 32(1), e4132. CrossRef Kavitha, D., & Ravikumar, S. (2021). IOT and context-aware learning-based optimal neural network model for real-time health monitoring. Transactions on Emerging Telecommunications Technologies, 32(1), e4132. CrossRef
13.
Zurück zum Zitat Hassan, B. A., & Rashid, T. A. (2020). Datasets on statistical analysis and performance evaluation of backtracking search optimisation algorithm compared with its counterpart algorithms. Data Brief, 28, 105046. CrossRef Hassan, B. A., & Rashid, T. A. (2020). Datasets on statistical analysis and performance evaluation of backtracking search optimisation algorithm compared with its counterpart algorithms. Data Brief, 28, 105046. CrossRef
14.
Zurück zum Zitat Hassan, B. A. (2020). CSCF: A chaotic sine cosine firefly algorithm for practical application problems. Neural Computing and Applications, 33, 1–20. Hassan, B. A. (2020). CSCF: A chaotic sine cosine firefly algorithm for practical application problems. Neural Computing and Applications, 33, 1–20.
15.
Zurück zum Zitat Gowthul Alam, M. M., & Baulkani, S. (2017). Reformulated query-based document retrieval using optimised kernel fuzzy clustering algorithm. International Journal of Business Intelligence and Data Mining, 12(3), 299. CrossRef Gowthul Alam, M. M., & Baulkani, S. (2017). Reformulated query-based document retrieval using optimised kernel fuzzy clustering algorithm. International Journal of Business Intelligence and Data Mining, 12(3), 299. CrossRef
16.
Zurück zum Zitat Manikandan, N., Gobalakrishnan, N., & Pradeep, K. (2022). Bee optimization based random double adaptive whale optimization model for task scheduling in cloud computing environment. Computer Communications, 187, 35–44. CrossRef Manikandan, N., Gobalakrishnan, N., & Pradeep, K. (2022). Bee optimization based random double adaptive whale optimization model for task scheduling in cloud computing environment. Computer Communications, 187, 35–44. CrossRef
17.
Zurück zum Zitat Bayazit, E. C., Sahingoz, O. K., & Dogan, B. 2020. Malware detection in Android systems with traditional machine learning models: A survey. In 2020 International congress on human–computer interaction, optimization and robotic applications ( HORA) (pp. 1–8). IEEE. Bayazit, E. C., Sahingoz, O. K., & Dogan, B. 2020. Malware detection in Android systems with traditional machine learning models: A survey. In 2020 International congress on human–computer interaction, optimization and robotic applications ( HORA) (pp. 1–8). IEEE.
18.
Zurück zum Zitat Millar, S., McLaughlin, N., Martinez del Rincon, J., Miller, P., & Zhao, Z. (2020). DANdroid: A multi-view discriminative adversarial network for obfuscated Android malware detection. In Proceedings of the tenth ACM conference on data and application security and privacy (pp. 353–364). Millar, S., McLaughlin, N., Martinez del Rincon, J., Miller, P., & Zhao, Z. (2020). DANdroid: A multi-view discriminative adversarial network for obfuscated Android malware detection. In Proceedings of the tenth ACM conference on data and application security and privacy (pp. 353–364).
19.
Zurück zum Zitat Jerbi, M., Dagdia, Z. C., Bechikh, S., & Said, L. B. (2020). On the use of artificial malicious patterns for android malware detection. Computers & Security, 92, 101743. CrossRef Jerbi, M., Dagdia, Z. C., Bechikh, S., & Said, L. B. (2020). On the use of artificial malicious patterns for android malware detection. Computers & Security, 92, 101743. CrossRef
20.
Zurück zum Zitat Wu, Q., Li, M., Zhu, X., & Liu, B. (2020). Mviidroid: A multiple view information integration approach for android malware detection and family identification. IEEE Multimedia, 27(4), 48–57. CrossRef Wu, Q., Li, M., Zhu, X., & Liu, B. (2020). Mviidroid: A multiple view information integration approach for android malware detection and family identification. IEEE Multimedia, 27(4), 48–57. CrossRef
21.
Zurück zum Zitat Hussain, S.J., Ahmed, U., Liaquat, H., Mir, S., Jhanjhi, N. Z., & Humayun. M (2019). IMIAD: Intelligent malware identification for android platform. In 2019 International conference on computer and information sciences ( ICCIS) (pp. 1–6). IEEE. Hussain, S.J., Ahmed, U., Liaquat, H., Mir, S., Jhanjhi, N. Z., & Humayun. M (2019). IMIAD: Intelligent malware identification for android platform. In 2019 International conference on computer and information sciences ( ICCIS) (pp. 1–6). IEEE.
22.
Zurück zum Zitat Feng, P., Ma, J., Sun, C., Xinpeng, Xu., & Ma, Y. (2018). A novel dynamic android malware detection system with ensemble learning. IEEE Access, 6, 30996–31011. CrossRef Feng, P., Ma, J., Sun, C., Xinpeng, Xu., & Ma, Y. (2018). A novel dynamic android malware detection system with ensemble learning. IEEE Access, 6, 30996–31011. CrossRef
23.
Zurück zum Zitat Xiao, X., Zhang, S., Mercaldo, F., Guangwu, Hu., & Sangaiah, A. K. (2019). Android malware detection based on system call sequences and LSTM. Multimedia Tools and Applications, 78(4), 3979–3999. CrossRef Xiao, X., Zhang, S., Mercaldo, F., Guangwu, Hu., & Sangaiah, A. K. (2019). Android malware detection based on system call sequences and LSTM. Multimedia Tools and Applications, 78(4), 3979–3999. CrossRef
24.
Zurück zum Zitat Imtiaz, S. I., urRehman, S., Javed, A. R., Jalil, Z., Liu, X., & Alnumay, W. S. (2021). DeepAMD: Detection and identification of android malware using high-efficient deep artificial neural network. Future Generation computer systems, 115, 844–856. CrossRef Imtiaz, S. I., urRehman, S., Javed, A. R., Jalil, Z., Liu, X., & Alnumay, W. S. (2021). DeepAMD: Detection and identification of android malware using high-efficient deep artificial neural network. Future Generation computer systems, 115, 844–856. CrossRef
25.
Zurück zum Zitat Mahindru, A., & Sangal, A. L. (2021). MLDroid—Framework for android malware detection using machine learning techniques. Neural Computing and Applications, 33(10), 5183–5240. CrossRef Mahindru, A., & Sangal, A. L. (2021). MLDroid—Framework for android malware detection using machine learning techniques. Neural Computing and Applications, 33(10), 5183–5240. CrossRef
26.
Zurück zum Zitat Zhu, H., Li, Y., Li, R., Li, J., You, Z.-H., & Song, H. (2020). Sedmdroid: An enhanced stacking ensemble of deep learning framework for android malware detection. IEEE Transactions on Network Science and Engineering, 8, 984–994. CrossRef Zhu, H., Li, Y., Li, R., Li, J., You, Z.-H., & Song, H. (2020). Sedmdroid: An enhanced stacking ensemble of deep learning framework for android malware detection. IEEE Transactions on Network Science and Engineering, 8, 984–994. CrossRef
27.
Zurück zum Zitat Su, X., Shi, W., Xilong, Qu., Zheng, Y., & Liu, X. (2020). DroidDeep: Using deep belief network to characterize and detect Android malware. Soft Computing, 24, 1–14. CrossRef Su, X., Shi, W., Xilong, Qu., Zheng, Y., & Liu, X. (2020). DroidDeep: Using deep belief network to characterize and detect Android malware. Soft Computing, 24, 1–14. CrossRef
28.
Zurück zum Zitat Zhang, H., Luo, S., Zhang, Y., & Pan, L. (2019). An efficient android malware detection system based on method-level behavioral semantic analysis. IEEE Access, 7, 69246–69256. CrossRef Zhang, H., Luo, S., Zhang, Y., & Pan, L. (2019). An efficient android malware detection system based on method-level behavioral semantic analysis. IEEE Access, 7, 69246–69256. CrossRef
29.
Zurück zum Zitat Wang, W., Zhao, M., & Wang, J. (2019). Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network. Journal of Ambient Intelligence and Humanized Computing, 10(8), 3035–3043. CrossRef Wang, W., Zhao, M., & Wang, J. (2019). Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network. Journal of Ambient Intelligence and Humanized Computing, 10(8), 3035–3043. CrossRef
30.
Zurück zum Zitat Karbab, E. B., Debbabi, M., Derhab, A., & Mouheb, D. (2017). Android malware detection using deep learning on API method sequences. arXiv:​1712.​08996. Karbab, E. B., Debbabi, M., Derhab, A., & Mouheb, D. (2017). Android malware detection using deep learning on API method sequences. arXiv:​1712.​08996.
31.
Zurück zum Zitat Alazab, M., Alazab, M., Shalaginov, A., Mesleh, A., & Awajan, A. (2020). Intelligent mobile malware detection using permission requests and API calls. Future Generation Computer Systems, 107, 509–521. CrossRef Alazab, M., Alazab, M., Shalaginov, A., Mesleh, A., & Awajan, A. (2020). Intelligent mobile malware detection using permission requests and API calls. Future Generation Computer Systems, 107, 509–521. CrossRef
32.
Zurück zum Zitat Jiang, X., Mao, B., Guan, J., & Huang, X. (2020). Android malware detection using fine-grained features. Scientific Program, 2020, 1–13. Jiang, X., Mao, B., Guan, J., & Huang, X. (2020). Android malware detection using fine-grained features. Scientific Program, 2020, 1–13.
33.
Zurück zum Zitat Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. MATH Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. MATH
34.
Zurück zum Zitat Garg, M., & Dhiman, G. (2020). Deep convolution neural network approach for defect inspection of textured surfaces. Journal of the Institute of Electronics and Computer, 2(1), 28–38. CrossRef Garg, M., & Dhiman, G. (2020). Deep convolution neural network approach for defect inspection of textured surfaces. Journal of the Institute of Electronics and Computer, 2(1), 28–38. CrossRef
35.
Zurück zum Zitat Kumar, A., Gandhi, C. P., Zhou, Y., Kumar, R., & Xiang, J. (2020). Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images. Applied Acoustics, 167, 107399. CrossRef Kumar, A., Gandhi, C. P., Zhou, Y., Kumar, R., & Xiang, J. (2020). Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images. Applied Acoustics, 167, 107399. CrossRef
36.
Zurück zum Zitat Połap, D., & Woźniak, M. (2021). Red fox optimization algorithm. Expert Systems with Applications, 166, 114107. CrossRef Połap, D., & Woźniak, M. (2021). Red fox optimization algorithm. Expert Systems with Applications, 166, 114107. CrossRef
37.
Zurück zum Zitat Braik, M. S. (2021). Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems. Expert Systems with Applications, 174, 114685. CrossRef Braik, M. S. (2021). Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems. Expert Systems with Applications, 174, 114685. CrossRef
Metadaten
Titel
An Efficient Android Malware Detection Using Adaptive Red Fox Optimization Based CNN
verfasst von
P. C. Senthil Mahesh
S. Hemalatha
Publikationsdatum
29.06.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09765-0