Skip to main content
Erschienen in: Wireless Personal Communications 3/2020

09.05.2020

An Efficient Compressive Sensing Routing Scheme for Internet of Things Based Wireless Sensor Networks

Erschienen in: Wireless Personal Communications | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Internet of Things (IoT) integrates diverse types of sensors, mobiles and other technologies to physical world and IoT technology is used in a wide range of applications. Compressive sensing based in-network compression is an efficient technique to reduce communication cost and accurately recover sensory data at the base station. In this paper, we investigate how compressive sensing can be combined with routing protocols for energy efficient data gathering in IoT-based wireless sensor networks. We propose a new compressive sensing routing scheme that includes the following new algorithms: (1) seed estimation algorithm to find the best measurement matrix by selecting the best-estimated seed, (2) chain construction algorithm to organize the network nodes during transmitting and receiving process, (3) compression approach to reduce the energy consumption and prolong the network lifetime by reducing the local data traffic, and (4) reconstruction algorithm to reconstruct the original data with minimum reconstruction error. The simulation results reveal that the proposed scheme outperforms existing baseline algorithms in terms of energy consumption, network lifetime and reconstruction error.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Celesti, A., Galletta, A., Carnevale, L., Fazio, M., Ĺay-Ekuakille, A., & Villari, M. (2017). An IoT cloud system for traffic monitoring and vehicular accidents prevention based on mobile sensor data processing. IEEE Sensors Journal, 18(12), 4795–4802.CrossRef Celesti, A., Galletta, A., Carnevale, L., Fazio, M., Ĺay-Ekuakille, A., & Villari, M. (2017). An IoT cloud system for traffic monitoring and vehicular accidents prevention based on mobile sensor data processing. IEEE Sensors Journal, 18(12), 4795–4802.CrossRef
2.
Zurück zum Zitat Mieyeville, F., Ichchou, M., Scorletti, G., Navarro, D., & Du, W. (2012). Wireless sensor networks for active vibration control in automobile structures. Smart Materials and Structures, 7, 075009.CrossRef Mieyeville, F., Ichchou, M., Scorletti, G., Navarro, D., & Du, W. (2012). Wireless sensor networks for active vibration control in automobile structures. Smart Materials and Structures, 7, 075009.CrossRef
3.
Zurück zum Zitat Lay-Ekuakille, A., Telesca, V., Ragosta, M., Giorgio, G. A., Mvemba, P. K., & Kidiamboko, S. (2017). Supervised and characterized smart monitoring network for sensing environmental quantities. IEEE Sensors Journal, 17(23), 7812–7819.CrossRef Lay-Ekuakille, A., Telesca, V., Ragosta, M., Giorgio, G. A., Mvemba, P. K., & Kidiamboko, S. (2017). Supervised and characterized smart monitoring network for sensing environmental quantities. IEEE Sensors Journal, 17(23), 7812–7819.CrossRef
4.
Zurück zum Zitat Zheng, J., Simplot-Ryl, D., Bisdikian, C., & Mouftah, H. T. (2011). The internet of things. IEEE Communications Magazine, 49(11), 3031.CrossRef Zheng, J., Simplot-Ryl, D., Bisdikian, C., & Mouftah, H. T. (2011). The internet of things. IEEE Communications Magazine, 49(11), 3031.CrossRef
5.
Zurück zum Zitat Palopoli, L., Passerone, R., & Rizano, T. (2011). Scalable offline optimization of industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 7(2), 328–329.CrossRef Palopoli, L., Passerone, R., & Rizano, T. (2011). Scalable offline optimization of industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 7(2), 328–329.CrossRef
6.
Zurück zum Zitat Singh, S. P., Urooj, S., & Ekuakille, A. L. (2016). Breast cancer detection using PCPCET and ADEWNN: A geometric invariant approach to medical X-ray image sensors. IEEE Sensors Journal, 16(12), 4847–4855.CrossRef Singh, S. P., Urooj, S., & Ekuakille, A. L. (2016). Breast cancer detection using PCPCET and ADEWNN: A geometric invariant approach to medical X-ray image sensors. IEEE Sensors Journal, 16(12), 4847–4855.CrossRef
7.
Zurück zum Zitat J. Haupt, W. Bajwa, & M. Rabbat (2012). Compressed sensing for networked data (pp 603–611). IEEE. J. Haupt, W. Bajwa, & M. Rabbat (2012). Compressed sensing for networked data (pp 603–611). IEEE.
8.
Zurück zum Zitat Akyildiz, I., Weilian, S., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. Communications Magazin IEEE, 40(8), 5102–5114.CrossRef Akyildiz, I., Weilian, S., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. Communications Magazin IEEE, 40(8), 5102–5114.CrossRef
9.
Zurück zum Zitat Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Network, 52(12), 2292–2330.CrossRef Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Network, 52(12), 2292–2330.CrossRef
10.
Zurück zum Zitat Khedr, A. M., Osamy, W., & Agrawal, D. P. (2009). Perimeter discovery in wireless sensor networks. Journal of Parallel and Distributed Computing, 69(11), 922–929.CrossRef Khedr, A. M., Osamy, W., & Agrawal, D. P. (2009). Perimeter discovery in wireless sensor networks. Journal of Parallel and Distributed Computing, 69(11), 922–929.CrossRef
11.
Zurück zum Zitat Handy, M. J., Haase, M., & Timmermann, D. (2002). Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In Mobile and wireless communications network, 2002. 4th international workshop on IEEE (pp. 368–372). Handy, M. J., Haase, M., & Timmermann, D. (2002). Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In Mobile and wireless communications network, 2002. 4th international workshop on IEEE (pp. 368–372).
12.
Zurück zum Zitat Salim, A., Osamy, W., & Khedr, A. M. (2014). IBLEACH: Intra-balanced LEACH protocol for wireless sensor networks. Wireless Network, 20(6), 1515–1525.CrossRef Salim, A., Osamy, W., & Khedr, A. M. (2014). IBLEACH: Intra-balanced LEACH protocol for wireless sensor networks. Wireless Network, 20(6), 1515–1525.CrossRef
13.
Zurück zum Zitat Lindsey, S., & Raghavendra, C. (2002). PEGASIS: Power-efficient gathering in sensor information systems. Aerospace Conference Proceedings IEEE, 3, 1125–1130. Lindsey, S., & Raghavendra, C. (2002). PEGASIS: Power-efficient gathering in sensor information systems. Aerospace Conference Proceedings IEEE, 3, 1125–1130.
14.
Zurück zum Zitat Ali, S., & Refaay, S. (2011). Chain-Chain based routing protocol. IJCSI International Journal of Computer Science Issues, 8, 694–0814. Ali, S., & Refaay, S. (2011). Chain-Chain based routing protocol. IJCSI International Journal of Computer Science Issues, 8, 694–0814.
15.
Zurück zum Zitat Aziz, A., Salim, A., & Osamy, W. (2013). Adaptive and efficient compressive sensing based technique for routing in wireless sensor networks. In Proceedings, INTHITEN (IoT and its enablers) conference (pp. 3–4). Aziz, A., Salim, A., & Osamy, W. (2013). Adaptive and efficient compressive sensing based technique for routing in wireless sensor networks. In Proceedings, INTHITEN (IoT and its enablers) conference (pp. 3–4).
16.
Zurück zum Zitat Luo, J., Xiang, L., & Rosenberg, C. (2010). Does compressed sensing improve the throughput of wireless sensor networks?. In Proceedings of the IEEE international conferecne on communications (ICC) (pp. 1–6). Luo, J., Xiang, L., & Rosenberg, C. (2010). Does compressed sensing improve the throughput of wireless sensor networks?. In Proceedings of the IEEE international conferecne on communications (ICC) (pp. 1–6).
17.
Zurück zum Zitat Xiang, L., Jun, L., & Athanasios, V. (2002). Compressed data aggregation for energy efficient wireless sensor networks. In Aerospace conference proceedings, 2002 IEEE (vol. 3, pp. 1125–1130). Xiang, L., Jun, L., & Athanasios, V. (2002). Compressed data aggregation for energy efficient wireless sensor networks. In Aerospace conference proceedings, 2002 IEEE (vol. 3, pp. 1125–1130).
18.
Zurück zum Zitat Chong, L., Feng, W., Jun, S., & Chang, C. (2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on mobile computing and networking, MobiCom’09 (pp. 145–156). New York, NY: ACM. Chong, L., Feng, W., Jun, S., & Chang, C. (2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on mobile computing and networking, MobiCom’09 (pp. 145–156). New York, NY: ACM.
19.
Zurück zum Zitat Lan, K. C., & Wei, M. Z. (2017). A compressibility-based clustering algorithm for hierarchical compressive data gathering. IEEE Sensors Journal, 17(8), 2550–2562.CrossRef Lan, K. C., & Wei, M. Z. (2017). A compressibility-based clustering algorithm for hierarchical compressive data gathering. IEEE Sensors Journal, 17(8), 2550–2562.CrossRef
20.
Zurück zum Zitat Luo, C., Wu, F., & Sun, J. (2010). Efficient measurement generation and pervasive sparsity for compressive data gathering. IEEE Transactions on Wireless Communications, 9(12), 3728–3738.CrossRef Luo, C., Wu, F., & Sun, J. (2010). Efficient measurement generation and pervasive sparsity for compressive data gathering. IEEE Transactions on Wireless Communications, 9(12), 3728–3738.CrossRef
21.
Zurück zum Zitat Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In Proceedings of the IEEE sensor, mesh, and ad hoc communication and networks (SECON 11) (pp. 46–54). Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In Proceedings of the IEEE sensor, mesh, and ad hoc communication and networks (SECON 11) (pp. 46–54).
22.
Zurück zum Zitat Nguyenab, M. T., & Teaguea, A. K. (2017). Compressive sensing based random walk routing in wireless sensor networks. Ad Hoc Networks, 54, 99–110.CrossRef Nguyenab, M. T., & Teaguea, A. K. (2017). Compressive sensing based random walk routing in wireless sensor networks. Ad Hoc Networks, 54, 99–110.CrossRef
23.
Zurück zum Zitat Li, Y. (2018). Compressed Sensing in Multi-Hop Large-Scale Wireless Sensor Networks Based on Routing Topology Tomography. IEEE Access, 6, 27637–27650.CrossRef Li, Y. (2018). Compressed Sensing in Multi-Hop Large-Scale Wireless Sensor Networks Based on Routing Topology Tomography. IEEE Access, 6, 27637–27650.CrossRef
25.
Zurück zum Zitat Yu, X., & Baek, S. J. (2018). Joint routing and scheduling for data collection with compressive sensing to achieve order-optimal latency, 13(10), 1–13. Yu, X., & Baek, S. J. (2018). Joint routing and scheduling for data collection with compressive sensing to achieve order-optimal latency, 13(10), 1–13.
27.
Zurück zum Zitat Nikam, K., & Mohani, S. P. (2018). IoT based greenhouse monitoring using data compressive sensing protocol in WSN: A review Kranti. International Journal of Innovative Research in Computer and Communication Engineering, 6(2), 1234–1237. Nikam, K., & Mohani, S. P. (2018). IoT based greenhouse monitoring using data compressive sensing protocol in WSN: A review Kranti. International Journal of Innovative Research in Computer and Communication Engineering, 6(2), 1234–1237.
28.
Zurück zum Zitat Khedr, A. M. (2015). Effective data acquisition protocol for multi-hop heterogeneous wireless sensor networks using compressive sensing. Algorithms, 8(4), 910–928.MATHCrossRef Khedr, A. M. (2015). Effective data acquisition protocol for multi-hop heterogeneous wireless sensor networks using compressive sensing. Algorithms, 8(4), 910–928.MATHCrossRef
29.
Zurück zum Zitat Omar, D. M., Khedr, A. M., & Agrawal, Dharma P. (2017). Optimized clustering protocol for balancing energy in wireless sensor networks. International Journal of Communication Networks and Information Security (IJCNIS), 9(3), 367–375. Omar, D. M., Khedr, A. M., & Agrawal, Dharma P. (2017). Optimized clustering protocol for balancing energy in wireless sensor networks. International Journal of Communication Networks and Information Security (IJCNIS), 9(3), 367–375.
30.
Zurück zum Zitat Khedr, A. M., & Omar, D. M. (2015). SEP-CS: Effective routing protocol for heterogeneous wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 26, 211–232. Khedr, A. M., & Omar, D. M. (2015). SEP-CS: Effective routing protocol for heterogeneous wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 26, 211–232.
31.
Zurück zum Zitat Osamy, W., Khedr, A. M., Aziza, A., & El-Sawya, A. (2018). Cluster-tree routing scheme for data gathering in periodic monitoring applications. IEEE Access, 6, 77372–77387.CrossRef Osamy, W., Khedr, A. M., Aziza, A., & El-Sawya, A. (2018). Cluster-tree routing scheme for data gathering in periodic monitoring applications. IEEE Access, 6, 77372–77387.CrossRef
33.
Zurück zum Zitat Aziz, A., Singh, K., Osamy, W., & Khedr, A. M. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 126, 12–28.CrossRef Aziz, A., Singh, K., Osamy, W., & Khedr, A. M. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 126, 12–28.CrossRef
34.
Zurück zum Zitat Omar, D. M. (2018). ERPLBC: Energy efficient routing protocol for load balanced clustering in wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 42, 145–169. Omar, D. M. (2018). ERPLBC: Energy efficient routing protocol for load balanced clustering in wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 42, 145–169.
35.
Zurück zum Zitat Haupt, J., Bajwa, W., & Rabbat, M. (2008). Compressed sensing for networked data. IEEE Signal Processing Magazine, 25(2), 92–101.CrossRef Haupt, J., Bajwa, W., & Rabbat, M. (2008). Compressed sensing for networked data. IEEE Signal Processing Magazine, 25(2), 92–101.CrossRef
36.
Zurück zum Zitat Jin, W., ShaoJie, T., Baocai, Y., & Yang, X. (2013). Data gathering in wireless sensor networks through intelligent compressive sensing. Digital Signal Processing, 23, 1539–1548.MathSciNetCrossRef Jin, W., ShaoJie, T., Baocai, Y., & Yang, X. (2013). Data gathering in wireless sensor networks through intelligent compressive sensing. Digital Signal Processing, 23, 1539–1548.MathSciNetCrossRef
37.
Zurück zum Zitat Li, S., Da Xu, L., & Wang, X. (2013). Compressed sensing signal and data acquisition in wireless sensor networks and internet of things. IEEE Transactions on Industrial Informatics, 9(4), 2177–2186.CrossRef Li, S., Da Xu, L., & Wang, X. (2013). Compressed sensing signal and data acquisition in wireless sensor networks and internet of things. IEEE Transactions on Industrial Informatics, 9(4), 2177–2186.CrossRef
38.
Zurück zum Zitat Burak, N., & Erdogan, H. (2013). Compressed sensing signal recovery via forward-backward pursuit. Digital Signal Processing, 23, 1539–1548.MathSciNetCrossRef Burak, N., & Erdogan, H. (2013). Compressed sensing signal recovery via forward-backward pursuit. Digital Signal Processing, 23, 1539–1548.MathSciNetCrossRef
39.
Zurück zum Zitat Duarte, M., Sarvotham, S., Wakin, M., Baron, D., & Baraniuk, R. (2005). Joint sparsity models for distributed compressed sensing. In Online proceedings of the workshop on signal processing with adaptive sparse structured representations (SPARS). Duarte, M., Sarvotham, S., Wakin, M., Baron, D., & Baraniuk, R. (2005). Joint sparsity models for distributed compressed sensing. In Online proceedings of the workshop on signal processing with adaptive sparse structured representations (SPARS).
40.
Zurück zum Zitat Salim, A., & Osamy, W. (2015). Distributed multi chain compressive sensing based routing algorithm for wireless sensor networks. Wireless Networks, 21(4), 1379–1390.CrossRef Salim, A., & Osamy, W. (2015). Distributed multi chain compressive sensing based routing algorithm for wireless sensor networks. Wireless Networks, 21(4), 1379–1390.CrossRef
42.
Zurück zum Zitat Baraniuk, R. G. (2007). Compressive sensing. IEEE Signal Processing Magazine, 24(4), 118–121.CrossRef Baraniuk, R. G. (2007). Compressive sensing. IEEE Signal Processing Magazine, 24(4), 118–121.CrossRef
43.
Zurück zum Zitat Mallat, S. (1999). A wavelet tour of signal processing. Cambridge: Academic Press.MATH Mallat, S. (1999). A wavelet tour of signal processing. Cambridge: Academic Press.MATH
44.
Zurück zum Zitat Candes, E., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(52), 145–156.MathSciNetMATH Candes, E., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(52), 145–156.MathSciNetMATH
45.
Zurück zum Zitat Venkataramani, R., & Bresler, Y. (1998) Sub-nyquist sampling of multiband signals: perfect reconstruction and bounds on aliasing error. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 12–15). Venkataramani, R., & Bresler, Y. (1998) Sub-nyquist sampling of multiband signals: perfect reconstruction and bounds on aliasing error. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 12–15).
46.
Zurück zum Zitat Tropp, J., & Gilber, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(14), 4655–4666.MathSciNetMATHCrossRef Tropp, J., & Gilber, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(14), 4655–4666.MathSciNetMATHCrossRef
47.
Zurück zum Zitat Donoho, D., Yaakov, T., Drori, I., & Jean, S. (2012). Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Transactions on Information Theory, 58(2), 1094–1121.MathSciNetMATHCrossRef Donoho, D., Yaakov, T., Drori, I., & Jean, S. (2012). Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Transactions on Information Theory, 58(2), 1094–1121.MathSciNetMATHCrossRef
48.
Zurück zum Zitat Deanna, N., & Roman, V. (2009). Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Computational Mathematics, 9(3), 317–334.MathSciNetMATHCrossRef Deanna, N., & Roman, V. (2009). Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Computational Mathematics, 9(3), 317–334.MathSciNetMATHCrossRef
49.
Zurück zum Zitat Bandyopadhyay, D., & Sen, J. (2011). Internet of things: Applications and challenges in technology and standardization. Wireless Personal Communications, 58, 49–69.CrossRef Bandyopadhyay, D., & Sen, J. (2011). Internet of things: Applications and challenges in technology and standardization. Wireless Personal Communications, 58, 49–69.CrossRef
50.
Zurück zum Zitat Wei, D., & Olgica, M. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5), 2230–2249.MathSciNetMATHCrossRef Wei, D., & Olgica, M. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5), 2230–2249.MathSciNetMATHCrossRef
Metadaten
Titel
An Efficient Compressive Sensing Routing Scheme for Internet of Things Based Wireless Sensor Networks
Publikationsdatum
09.05.2020
Erschienen in
Wireless Personal Communications / Ausgabe 3/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07454-4

Weitere Artikel der Ausgabe 3/2020

Wireless Personal Communications 3/2020 Zur Ausgabe

Neuer Inhalt