Skip to main content
Erschienen in:

10.09.2024

An efficient energy supply policy and optimized self-adaptive data aggregation with deep learning in heterogeneous wireless sensor network

verfasst von: Rajkumar Tharmalingam, Nandhagopal Nachimuthu, G. Prakash

Erschienen in: Peer-to-Peer Networking and Applications | Ausgabe 6/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel geht den Herausforderungen und Lösungen für effizientes Energiemanagement und Datenaggregation in heterogenen drahtlosen Sensornetzwerken (HWSNs) nach. Es führt eine neue, netzwerkbasierte Datenfusionstechnologie mit dem Namen Planar Flow-Based Variational Auto-Encoder-based Data Fusion (PF-VAE-DF) für mobile HWSNs ein. Diese Methode verbessert die Effizienz der Datenerfassung, indem sie die Größe des Schiebefensters auf der Grundlage von Variationen des Datenstroms anpasst. Darüber hinaus schlägt der Artikel eine effiziente Energieversorgungsstrategie vor, die es Sensorknoten ermöglicht, Energie aus der Umwelt oder anderen Netznutzern zu gewinnen, was die Lebensdauer des Netzwerks deutlich verlängert. Die Forschungsergebnisse unterstreichen die Bedeutung von Multi-Ziel-Clustern und Datenkomprimierung bei der Verbesserung der Netzwerkleistung und Energieeffizienz. Die vorgeschlagene Methodik wird durch umfangreiche Simulationen validiert, die eine im Vergleich zu bestehenden Ansätzen überlegene Leistung zeigen. Dieser Artikel ist von entscheidender Bedeutung für Fachleute, die innovative Lösungen suchen, um die Leistung und Langlebigkeit drahtloser Sensornetzwerke zu verbessern.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nedham WB, Al-Qurabat AKM (2023) A comprehensive review of clustering approaches for energy efficiency in wireless sensor networks. Int J Comput Appl Technol 72(2):139–160CrossRef Nedham WB, Al-Qurabat AKM (2023) A comprehensive review of clustering approaches for energy efficiency in wireless sensor networks. Int J Comput Appl Technol 72(2):139–160CrossRef
2.
Zurück zum Zitat Nedham WB, Al-Qurabat AKM (2023) A review of current prediction techniques for extending the lifetime of wireless sensor networks. Int J Comput Appl Technol 71(4):352–362CrossRefMATH Nedham WB, Al-Qurabat AKM (2023) A review of current prediction techniques for extending the lifetime of wireless sensor networks. Int J Comput Appl Technol 71(4):352–362CrossRefMATH
3.
Zurück zum Zitat Nedham WB, Al-Qurabat AKM (2022) An improved energy efficient clustering protocol for wireless sensor networks. In 2022 International Conference for Natural and Applied Sciences (ICNAS). IEEE, Baghdad, Iraq, p 23-28 Nedham WB, Al-Qurabat AKM (2022) An improved energy efficient clustering protocol for wireless sensor networks. In 2022 International Conference for Natural and Applied Sciences (ICNAS). IEEE, Baghdad, Iraq, p 23-28
4.
Zurück zum Zitat Osamy W, Alwasel B, Salim A, Khedr AM, Aziz A (2024) LBAS: load balancing aware clustering scheme for IoT-based heterogeneous wireless sensor networks. IEEE Sensors J 24(9):15472–15490. IEEE Osamy W, Alwasel B, Salim A, Khedr AM, Aziz A (2024) LBAS: load balancing aware clustering scheme for IoT-based heterogeneous wireless sensor networks. IEEE Sensors J 24(9):15472–15490. IEEE
5.
Zurück zum Zitat Jabar MK, Al-Qurabat AKM (2021) Human activity diagnosis system based on the internet of things. J Phys Conf Ser 1879(2):022079. IOP Publishing, University of Babylon, Babylon Jabar MK, Al-Qurabat AKM (2021) Human activity diagnosis system based on the internet of things. J Phys Conf Ser 1879(2):022079. IOP Publishing, University of Babylon, Babylon
6.
Zurück zum Zitat Al-Qurabat AKM, Abdulzahra SA (2020) An overview of periodic wireless sensor networks to the internet of things. IOP Conf Ser Mater Sci Eng 928(3):032055. IOP Publishing, Babylon Al-Qurabat AKM, Abdulzahra SA (2020) An overview of periodic wireless sensor networks to the internet of things. IOP Conf Ser Mater Sci Eng 928(3):032055. IOP Publishing, Babylon
7.
Zurück zum Zitat Khan A, Gupta S, Gupta SK (2020) Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques. Int J Disaster Risk Sci 47:101642CrossRefMATH Khan A, Gupta S, Gupta SK (2020) Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques. Int J Disaster Risk Sci 47:101642CrossRefMATH
8.
Zurück zum Zitat Al-hajjar ALN, Al-Qurabat AKM (2023) Epileptic seizure detection using feature importance and ML classifiers. J Educ Pure Sci-Univ Thi-Qar 13(2):163 Al-hajjar ALN, Al-Qurabat AKM (2023) Epileptic seizure detection using feature importance and ML classifiers. J Educ Pure Sci-Univ Thi-Qar 13(2):163
9.
Zurück zum Zitat Raheem RAA, Al-Qurabat AKM (2022) Developing a predictive health care system for diabetes diagnosis as a machine learning-based web service. J Univ Babylon Pure Appl Sci 30(1):1–32 Raheem RAA, Al-Qurabat AKM (2022) Developing a predictive health care system for diabetes diagnosis as a machine learning-based web service. J Univ Babylon Pure Appl Sci 30(1):1–32
10.
Zurück zum Zitat Al-Hajjar ALN, Al-Qurabat AKM (2023) An overview of machine learning methods in enabling IoMT-based epileptic seizure detection. J Supercomput 79(14):16017–16064CrossRef Al-Hajjar ALN, Al-Qurabat AKM (2023) An overview of machine learning methods in enabling IoMT-based epileptic seizure detection. J Supercomput 79(14):16017–16064CrossRef
11.
Zurück zum Zitat Murphy FE, Popovici E, Whelan P, Magno M (2015) Development of a heterogeneous wireless sensor network for instrumentation and analysis of beehives. In 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. IEEE, Pisa, Italy, p 346–351 Murphy FE, Popovici E, Whelan P, Magno M (2015) Development of a heterogeneous wireless sensor network for instrumentation and analysis of beehives. In 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. IEEE, Pisa, Italy, p 346–351
12.
Zurück zum Zitat Yu J, Chen Y, Ma L, Huang B, Cheng X (2016) On connected target k-coverage in heterogeneous wireless sensor networks. Sensors 16(1):104CrossRefMATH Yu J, Chen Y, Ma L, Huang B, Cheng X (2016) On connected target k-coverage in heterogeneous wireless sensor networks. Sensors 16(1):104CrossRefMATH
13.
Zurück zum Zitat Bhat SJ, Santhosh KV (2021) A method for fault tolerant localization of heterogeneous wireless sensor networks. IEEE Access 9:37054–37063CrossRefMATH Bhat SJ, Santhosh KV (2021) A method for fault tolerant localization of heterogeneous wireless sensor networks. IEEE Access 9:37054–37063CrossRefMATH
14.
Zurück zum Zitat Abdulzahra AMK, Al-Qurabat AKM, Abdulzahra SA (2023) Optimizing energy consumption in WSN-based IoT using unequal clustering and sleep scheduling methods. IoT 22:100765 Abdulzahra AMK, Al-Qurabat AKM, Abdulzahra SA (2023) Optimizing energy consumption in WSN-based IoT using unequal clustering and sleep scheduling methods. IoT 22:100765
15.
Zurück zum Zitat Al-Qurabat AKM, Mohammed ZA, Hussein ZJ (2021) Data traffic management based on compression and MDL techniques for smart agriculture in IoT. Wireless Pers Commun 120(3):2227–2258CrossRefMATH Al-Qurabat AKM, Mohammed ZA, Hussein ZJ (2021) Data traffic management based on compression and MDL techniques for smart agriculture in IoT. Wireless Pers Commun 120(3):2227–2258CrossRefMATH
16.
Zurück zum Zitat Ibrahim M, Harb H, Nasser A, Mansour A, Osswald C (2022) Aggregation-scheduling based mechanism for energy-efficient multivariate sensor networks. IEEE Sens J 22(16):16662–16672CrossRef Ibrahim M, Harb H, Nasser A, Mansour A, Osswald C (2022) Aggregation-scheduling based mechanism for energy-efficient multivariate sensor networks. IEEE Sens J 22(16):16662–16672CrossRef
17.
Zurück zum Zitat Vo VV, Le DT, Raza SM, Kim M, Choo H (2024) Active neighbor exploitation for fast data aggregation in IoT sensor networks. IEEE Int Things J 14 Vo VV, Le DT, Raza SM, Kim M, Choo H (2024) Active neighbor exploitation for fast data aggregation in IoT sensor networks. IEEE Int Things J 14
18.
Zurück zum Zitat Kadhum Idrees A, Alhussein DA, Harb H (2023) Energy-efficient multisensor adaptive sampling and aggregation for patient monitoring in edge computing based IoHT networks. J Ambient Intell Smart Environ (Preprint) 15(3):1–19, 235–253 Kadhum Idrees A, Alhussein DA, Harb H (2023) Energy-efficient multisensor adaptive sampling and aggregation for patient monitoring in edge computing based IoHT networks. J Ambient Intell Smart Environ (Preprint) 15(3):1–19, 235–253
19.
Zurück zum Zitat First A (n.d.) Data Aggregation in Wireless Sensor Networks Using Machine Learning in smart cities First A (n.d.) Data Aggregation in Wireless Sensor Networks Using Machine Learning in smart cities
20.
Zurück zum Zitat Abdulzahra AMK, Al-Qurabat AKM (2022) A clustering approach based on fuzzy C-means in wireless sensor networks for IoT applications. Karbala Int J Mod Sci 8(4):579–595CrossRefMATH Abdulzahra AMK, Al-Qurabat AKM (2022) A clustering approach based on fuzzy C-means in wireless sensor networks for IoT applications. Karbala Int J Mod Sci 8(4):579–595CrossRefMATH
21.
Zurück zum Zitat Saeedi IDI, Al-Qurabat AKM (2022) An energy-saving data aggregation method for wireless sensor networks based on the extraction of extrema points. AIP Conf Proc 2398(1):050004-1–050004-15. AIP Publishing, Babylon Saeedi IDI, Al-Qurabat AKM (2022) An energy-saving data aggregation method for wireless sensor networks based on the extraction of extrema points. AIP Conf Proc 2398(1):050004-1–050004-15. AIP Publishing, Babylon
22.
Zurück zum Zitat Al-Qurabat AKM, Salman HM, Finjan AAR (2022) Important extrema points extraction-based data aggregation approach for elongating the WSN lifetime. Int J Comput Appl Technol 68(4):357–368CrossRef Al-Qurabat AKM, Salman HM, Finjan AAR (2022) Important extrema points extraction-based data aggregation approach for elongating the WSN lifetime. Int J Comput Appl Technol 68(4):357–368CrossRef
23.
Zurück zum Zitat Saeedi IDI, Al-Qurabat AKM (2022) Perceptually important points-based data aggregation method for wireless sensor networks. Baghdad Sci J 19(4):0875–0875CrossRef Saeedi IDI, Al-Qurabat AKM (2022) Perceptually important points-based data aggregation method for wireless sensor networks. Baghdad Sci J 19(4):0875–0875CrossRef
24.
Zurück zum Zitat Hajjaji Y, Boulila W, Farah IR, Romdhani I, Hussain A (2021) Big data and IoT-based applications in smart environments: a systematic review. Comput Sci Rev 39:100318CrossRef Hajjaji Y, Boulila W, Farah IR, Romdhani I, Hussain A (2021) Big data and IoT-based applications in smart environments: a systematic review. Comput Sci Rev 39:100318CrossRef
25.
Zurück zum Zitat Ibrahim M, Harb H, Mansour A, Nasser A, Osswald C (2021) All-in-one: Toward hybrid data collection and energy saving mechanism in sensing-based IoT applications. Peer-to-Peer Netw Appl 14(3):1154–1173CrossRefMATH Ibrahim M, Harb H, Mansour A, Nasser A, Osswald C (2021) All-in-one: Toward hybrid data collection and energy saving mechanism in sensing-based IoT applications. Peer-to-Peer Netw Appl 14(3):1154–1173CrossRefMATH
26.
Zurück zum Zitat Xu K, Qu Y, Yang K (2016) A tutorial on the internet of things: from a heterogeneous network integration perspective. IEEE Network 30(2):102–108CrossRefMATH Xu K, Qu Y, Yang K (2016) A tutorial on the internet of things: from a heterogeneous network integration perspective. IEEE Network 30(2):102–108CrossRefMATH
27.
Zurück zum Zitat Qiu T, Chen N, Li K, Qiao D, Fu Z (2017) Heterogeneous ad hoc networks: architectures, advances and challenges. Ad Hoc Netw 55:143–152CrossRefMATH Qiu T, Chen N, Li K, Qiao D, Fu Z (2017) Heterogeneous ad hoc networks: architectures, advances and challenges. Ad Hoc Netw 55:143–152CrossRefMATH
28.
Zurück zum Zitat Pham VT, Nguyen TN, Liu BH, Lin T (2021) Minimizing latency for multiple-type data aggregation in wireless sensor networks. In 2021 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, Nanjing, China, p 1–6 Pham VT, Nguyen TN, Liu BH, Lin T (2021) Minimizing latency for multiple-type data aggregation in wireless sensor networks. In 2021 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, Nanjing, China, p 1–6
29.
Zurück zum Zitat Uddin MZ, Hassan MM, Alsanad A, Savaglio C (2020) A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare. Inf Fusion 55:105–115CrossRef Uddin MZ, Hassan MM, Alsanad A, Savaglio C (2020) A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare. Inf Fusion 55:105–115CrossRef
30.
Zurück zum Zitat M Al-Qurabat AK (2021) A lightweight Huffman-based differential encoding lossless compression technique in IoT for smart agriculture. Int J Comput Digit Syst M Al-Qurabat AK (2021) A lightweight Huffman-based differential encoding lossless compression technique in IoT for smart agriculture. Int J Comput Digit Syst
31.
Zurück zum Zitat Abdulzahra AMK, Al-Qurabat AKM (2023) An energy-efficient clustering protocol for the lifetime elongation of wireless sensors in iot networks. In IT Applications for Sustainable Living. Springer Nature Switzerland, Cham, p 103-114 Abdulzahra AMK, Al-Qurabat AKM (2023) An energy-efficient clustering protocol for the lifetime elongation of wireless sensors in iot networks. In IT Applications for Sustainable Living. Springer Nature Switzerland, Cham, p 103-114
32.
Zurück zum Zitat Abdulhussein Abdulzahra S, Al-Qurabat KM (2024) Exploring radio frequency-based UAV localization techniques: a comprehensive review. Int J Comput Digit Syst 15(1):1565–1581CrossRefMATH Abdulhussein Abdulzahra S, Al-Qurabat KM (2024) Exploring radio frequency-based UAV localization techniques: a comprehensive review. Int J Comput Digit Syst 15(1):1565–1581CrossRefMATH
33.
Zurück zum Zitat Roberts MK, Ramasamy P (2023) An improved high performance clustering based routing protocol for wireless sensor networks in IoT. Telecommun Syst 82(1):45–59CrossRefMATH Roberts MK, Ramasamy P (2023) An improved high performance clustering based routing protocol for wireless sensor networks in IoT. Telecommun Syst 82(1):45–59CrossRefMATH
34.
Zurück zum Zitat Shahryari MS, Farzinvash L, Feizi-Derakhshi MR, Taherkordi A (2023) High-throughput and energy-efficient data gathering in heterogeneous multi-channel wireless sensor networks using genetic algorithm. Ad Hoc Netw 139:103041CrossRef Shahryari MS, Farzinvash L, Feizi-Derakhshi MR, Taherkordi A (2023) High-throughput and energy-efficient data gathering in heterogeneous multi-channel wireless sensor networks using genetic algorithm. Ad Hoc Netw 139:103041CrossRef
35.
Zurück zum Zitat Nonita S, Xalikovich PA, Kumar CR, Rakhra M, Samori IA, Maquera YM, Gonzáles JLA (2022) Intelligent water drops algorithm-based aggregation in heterogeneous wireless sensor network. J Sensors 2022(1):6099330 Nonita S, Xalikovich PA, Kumar CR, Rakhra M, Samori IA, Maquera YM, Gonzáles JLA (2022) Intelligent water drops algorithm-based aggregation in heterogeneous wireless sensor network. J Sensors 2022(1):6099330
36.
Zurück zum Zitat Chaitra HV, Manjula G, Shabaz M, Martinez-Valencia AB, Vikhyath KB, Verma S, Arias-Gonzáles JL (2023) Delay optimization and energy balancing algorithm for improving network lifetime in fixed wireless sensor networks. Phys Comm 58:102038CrossRef Chaitra HV, Manjula G, Shabaz M, Martinez-Valencia AB, Vikhyath KB, Verma S, Arias-Gonzáles JL (2023) Delay optimization and energy balancing algorithm for improving network lifetime in fixed wireless sensor networks. Phys Comm 58:102038CrossRef
37.
Zurück zum Zitat Chandana MS, Rao KR, Reddy BNK (2023) Developing an adaptive active sleep energy efficient method in heterogeneous wireless sensor network. Multimed Tools Appl 83(5):13689–13706CrossRefMATH Chandana MS, Rao KR, Reddy BNK (2023) Developing an adaptive active sleep energy efficient method in heterogeneous wireless sensor network. Multimed Tools Appl 83(5):13689–13706CrossRefMATH
38.
Zurück zum Zitat Chu SC, Xu XW, Yang SY, Pan JS (2022) Parallel fish migration optimization with compact technology based on memory principle for wireless sensor networks. Knowl-Based Syst 241:108124CrossRefMATH Chu SC, Xu XW, Yang SY, Pan JS (2022) Parallel fish migration optimization with compact technology based on memory principle for wireless sensor networks. Knowl-Based Syst 241:108124CrossRefMATH
39.
Zurück zum Zitat Rawat P, Chauhan S (2022) A novel cluster head selection and data aggregation protocol for heterogeneous wireless sensor network. Arab J Sci Eng 47:1–16, 1971–1986 Rawat P, Chauhan S (2022) A novel cluster head selection and data aggregation protocol for heterogeneous wireless sensor network. Arab J Sci Eng 47:1–16, 1971–1986
40.
Zurück zum Zitat Wang J, Gao Y, Liu W, Sangaiah AK, Kim HJ (2019) An intelligent data gathering schema with data fusion supported for mobile sink in wireless sensor networks. Int J Distrib Sens Netw 15(3):1550147719839581CrossRef Wang J, Gao Y, Liu W, Sangaiah AK, Kim HJ (2019) An intelligent data gathering schema with data fusion supported for mobile sink in wireless sensor networks. Int J Distrib Sens Netw 15(3):1550147719839581CrossRef
41.
Zurück zum Zitat Lin Z, Keh HC, Wu R, Roy DS (2020) Joint data collection and fusion using mobile sink in heterogeneous wireless sensor networks. IEEE Sens J 21(2):2364–2376CrossRefMATH Lin Z, Keh HC, Wu R, Roy DS (2020) Joint data collection and fusion using mobile sink in heterogeneous wireless sensor networks. IEEE Sens J 21(2):2364–2376CrossRefMATH
42.
Zurück zum Zitat Najjar-Ghabel S, Farzinvash L, Razavi SN (2020) Mobile sink-based data gathering in wireless sensor networks with obstacles using artificial intelligence algorithms. Ad Hoc Netw 106:102243CrossRef Najjar-Ghabel S, Farzinvash L, Razavi SN (2020) Mobile sink-based data gathering in wireless sensor networks with obstacles using artificial intelligence algorithms. Ad Hoc Netw 106:102243CrossRef
43.
Zurück zum Zitat Soundari AG, Jyothi VL (2020) Energy efficient machine learning technique for smart data colle. Circuits Syst Signal Process 39(2):1089–1122CrossRefMATH Soundari AG, Jyothi VL (2020) Energy efficient machine learning technique for smart data colle. Circuits Syst Signal Process 39(2):1089–1122CrossRefMATH
Metadaten
Titel
An efficient energy supply policy and optimized self-adaptive data aggregation with deep learning in heterogeneous wireless sensor network
verfasst von
Rajkumar Tharmalingam
Nandhagopal Nachimuthu
G. Prakash
Publikationsdatum
10.09.2024
Verlag
Springer US
Erschienen in
Peer-to-Peer Networking and Applications / Ausgabe 6/2024
Print ISSN: 1936-6442
Elektronische ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-024-01791-y