Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

20.12.2019 | Research Article - Computer Engineering and Computer Science | Ausgabe 4/2020

Arabian Journal for Science and Engineering 4/2020

An Efficient Language-Independent Acoustic Emotion Classification System

Zeitschrift:
Arabian Journal for Science and Engineering > Ausgabe 4/2020
Autoren:
Rajwinder Singh, Harshita Puri, Naveen Aggarwal, Varun Gupta
Wichtige Hinweise
Rajwinder Singh, Harshita Puri have contributed equally to this work.

Abstract

Emotion recognition from human speech is essential to understand the convoluted human nature. For any machine to accurately decipher the intended message in the speech, it must understand the emotion of spoken words. Emotions control the modulations in the speech, and these modulations may even change the context. Through this paper, we aim to propose a system which can efficiently detect the emotions from speech. The domain of emotion recognition from human speech is very complex due to highly overlapping regions of emotions, and it sometimes becomes very difficult to distinguish between two emotions just based on voice. Such ambiguity in the label assignment is responsible for low classification accuracy in existing systems. In the proposed system, we have worked on finding both the suitable feature set as well as the classifier. The proposed system achieved 29.74% increase in classification accuracy in comparison with the baseline human accuracy on the primary dataset, i.e. ‘CREMA-D’. Further, we have validated on other standard datasets such as ‘EmoDB’, ‘RAVDESS’, and ‘SAVEE’. ‘EmoDB’ is a German language dataset, while the other two are English language datasets, which is in line with the language-independent nature of our system. When compared to the current state of the art in this domain on these datasets, the proposed system gives better accuracies for most of the cases, and for some cases, it gives comparable accuracies to baseline models or existing published work.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2020

Arabian Journal for Science and Engineering 4/2020 Zur Ausgabe

Research Article - Computer Engineering and Computer Science

TQ-Model: A New Evaluation Model for Knowledge-Based Authentication Schemes

Research Article - Special Issue - Intelligent Computing and Interdisciplinary Applications

Empirical Evaluation of Automated Test Suite Generation and Optimization

RESEARCH ARTICLE - SPECIAL ISSUE - INTELLIGENT COMPUTING and INTERDISCIPLINARY APPLICATIONS

An Efficient Filter-Based Feature Selection Model to Identify Significant Features from High-Dimensional Microarray Data

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise