Skip to main content

2023 | OriginalPaper | Buchkapitel

An Efficient Lattice Boltzmann Model for 3D Transient Flows

verfasst von : Raoudha Chaabane, Abdelmajid Jemni, Fethi Aloui

Erschienen in: Energy and Exergy for Sustainable and Clean Environment, Volume 2

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we report on the development and the implementation of the mesoscopic approach based on the Lattice Boltzmann method (LBM) in order to simulate three-dimensional coupled modes of thermal and fluid flows. First the lattice Boltzmann method (LBM) has been used to solve transient heat conduction problems in 3D Cartesian geometries. To study the suitability of the LBM, the problem has also been extended to deal with a coupled conduction-radiation heat transfer problem in a three-dimensional cavity containing an absorbing, emitting, and scattering medium. In this case, the radiative information is obtained by solving the radiative transfer equation (RTE) using the control volume finite element method (CVFEM). Second, a 3D incompressible thermal lattice Boltzmann model is proposed to solve 3D incompressible thermal flow problems. A D3Q19 particle velocity model is incorporated in our thermal model where the density, velocity, and temperature fields are calculated using the two double population lattice Boltzmann equation (LBE). It is indicated that the present thermal model is simple and easy for implementation. It is validated by its application to simulate the 3D natural convection of fluid in a cubical enclosure, which is heated differentially at two vertical side walls. In order to test the efficiency of the developed method, comparisons are made for the effect of Rayleigh number on the temperature and velocity distributions in the medium. Validation and the analysis of numerical results of flow and thermal fields in the cubic cavity are at Rayleigh numbers of 103–106. In all studied cases, it is found that the numerical results agree well with the results reported in previous studies. The 3D LBGK algorithm presented here can also be extended for a convective radiative problem in a three-dimensional grey participating medium in the presence of computers with sufficient memory and computational power to perform well-resolved calculations of the hybrid 3D-proposed model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lee KH, Viskanta R (2001) Two-dimensional combined conduction and radiation heat transfer: comparison of the discrete coordinates method and the diffusion approximation methods. Numer Heat Transf A 39:205–225CrossRef Lee KH, Viskanta R (2001) Two-dimensional combined conduction and radiation heat transfer: comparison of the discrete coordinates method and the diffusion approximation methods. Numer Heat Transf A 39:205–225CrossRef
2.
Zurück zum Zitat Razzaque MM, Howell JR, Klein DE (1984) Coupled radiative and conductive heat transfer in a two dimensional enclosure with gray participating media using finite elements. J Heat Transf 106(3):613–619 Razzaque MM, Howell JR, Klein DE (1984) Coupled radiative and conductive heat transfer in a two dimensional enclosure with gray participating media using finite elements. J Heat Transf 106(3):613–619
3.
Zurück zum Zitat Ho CH, Owisik MN (1988) Combined conduction and radiation in a two-dimensional rectangular enclosure. Numer Heat Transf 13:229–239CrossRef Ho CH, Owisik MN (1988) Combined conduction and radiation in a two-dimensional rectangular enclosure. Numer Heat Transf 13:229–239CrossRef
4.
Zurück zum Zitat Rousse DR, Gautier G, Sacadura JF (2000) Numerical prediction of two-dimensional conduction, convection and radiation heat transfer. II-validation Int J ThermSci 39:332–353 Rousse DR, Gautier G, Sacadura JF (2000) Numerical prediction of two-dimensional conduction, convection and radiation heat transfer. II-validation Int J ThermSci 39:332–353
5.
Zurück zum Zitat Wellele O, Orlande HRB, Ruperti N Jr, Colaco MJ, Delmas A (2006) Coupled conduction-radiation in semi-transparent materials at high temperatures. J PhysChem Solids 67:2230–2240 Wellele O, Orlande HRB, Ruperti N Jr, Colaco MJ, Delmas A (2006) Coupled conduction-radiation in semi-transparent materials at high temperatures. J PhysChem Solids 67:2230–2240
6.
Zurück zum Zitat Chaabane R, Askri F, Narallah SB (2011) Parametric study of simultaneous transient conduction and radiation in a two-dimensional participating medium. Commun Nonlinear Sci Num Simul 16:4006–4020 Chaabane R, Askri F, Narallah SB (2011) Parametric study of simultaneous transient conduction and radiation in a two-dimensional participating medium. Commun Nonlinear Sci Num Simul 16:4006–4020
7.
Zurück zum Zitat Chaabane R, Askri F, Narallah SB (2011) A new hybrid algorithm for solving transient combined conduction radiation heat transfer problems. J Thermal Sci 15:649–662 Chaabane R, Askri F, Narallah SB (2011) A new hybrid algorithm for solving transient combined conduction radiation heat transfer problems. J Thermal Sci 15:649–662
8.
Zurück zum Zitat Chaabane R, Askri F, Narallah SB (2011) Analysis of two-dimensional transient conduction-radiation problems in an anisotropically scattering participating enclosure using the lattice Boltzmann method and the control volume finite element method. J Comput Phys Commun 182:1402–1413 Chaabane R, Askri F, Narallah SB (2011) Analysis of two-dimensional transient conduction-radiation problems in an anisotropically scattering participating enclosure using the lattice Boltzmann method and the control volume finite element method. J Comput Phys Commun 182:1402–1413
9.
Zurück zum Zitat Chaabane R, Askri F, Narallah SB (2011) Application of the lattice Boltzmann method to transient conduction and radiation heat transfer in cylindrical media. J Quant Spectrosc Radiat Transf 112:2013–2027 Chaabane R, Askri F, Narallah SB (2011) Application of the lattice Boltzmann method to transient conduction and radiation heat transfer in cylindrical media. J Quant Spectrosc Radiat Transf 112:2013–2027
10.
Zurück zum Zitat Sakami M, Charette M, Le Dez V (1998) Radiative heat transfer in three dimensional enclosures of complex geometries by using the discrete ordinates method. J Quant Spectrosc Radiat Transf 59:117–136CrossRef Sakami M, Charette M, Le Dez V (1998) Radiative heat transfer in three dimensional enclosures of complex geometries by using the discrete ordinates method. J Quant Spectrosc Radiat Transf 59:117–136CrossRef
11.
Zurück zum Zitat Kang SH, Song T-H (2008) Finite element formulation of the first- and second-order discrete ordinates equations for radiative heat transfer calculation in three-dimensional participating media. J Quant Spectrosc Radiat Transf 109:2094–2107 Kang SH, Song T-H (2008) Finite element formulation of the first- and second-order discrete ordinates equations for radiative heat transfer calculation in three-dimensional participating media. J Quant Spectrosc Radiat Transf 109:2094–2107
12.
Zurück zum Zitat Mishra SC, Lankadasu A, Beronov K (2005) Application of the lattice Boltzmann method for solving the energy equation of a 2-D transient conduction-radiation problem. Int J Heat Mass Transf 48:3648–3659CrossRef Mishra SC, Lankadasu A, Beronov K (2005) Application of the lattice Boltzmann method for solving the energy equation of a 2-D transient conduction-radiation problem. Int J Heat Mass Transf 48:3648–3659CrossRef
13.
Zurück zum Zitat Mishra SC, Roy Hillol K (2007) Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method. J Comput Phys 223: 89–107 Mishra SC, Roy Hillol K (2007) Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method. J Comput Phys 223: 89–107
14.
Zurück zum Zitat Mishra SC, Mondal B, Kush T, Siva Rama Krishna B (2009) Solving transient heat conduction problems on uniform and non-uniform lattices using the lattice Boltzmann method. Int Commun Heat Mass Transf 36:322–328 Mishra SC, Mondal B, Kush T, Siva Rama Krishna B (2009) Solving transient heat conduction problems on uniform and non-uniform lattices using the lattice Boltzmann method. Int Commun Heat Mass Transf 36:322–328
15.
Zurück zum Zitat Mishra SC, Lankadasu A (2005) Analysis of transient conduction and radiation heat transfer using the lattice Boltzmann method and the discrete transfer method. Numer Heat Transf A 47:935–954CrossRef Mishra SC, Lankadasu A (2005) Analysis of transient conduction and radiation heat transfer using the lattice Boltzmann method and the discrete transfer method. Numer Heat Transf A 47:935–954CrossRef
16.
Zurück zum Zitat Mondal B, Mishra SC (2009) Simulation of natural-convection in the presence of volumetric radiation using the lattice Boltzmann method. Numer Heat Transf As 55:18–41CrossRef Mondal B, Mishra SC (2009) Simulation of natural-convection in the presence of volumetric radiation using the lattice Boltzmann method. Numer Heat Transf As 55:18–41CrossRef
17.
Zurück zum Zitat Mondal B, Li X (2010) Effect of volumetric radiation on natural convection in a square cavity using lattice Boltzmann method with non-uniform lattices. Int J Heat Mass Transf 5:4935–4948 Mondal B, Li X (2010) Effect of volumetric radiation on natural convection in a square cavity using lattice Boltzmann method with non-uniform lattices. Int J Heat Mass Transf 5:4935–4948
18.
Zurück zum Zitat Benzi R, Succi S, Vergassola M (1992) The lattice Boltzmann equation: theory and applications. Phys Rev 222:145–197 Benzi R, Succi S, Vergassola M (1992) The lattice Boltzmann equation: theory and applications. Phys Rev 222:145–197
19.
Zurück zum Zitat Mondal B, Siva Rama Krishna B, Mishra SC, Kush T (2009) Solving transient heat conduction problems on uniform and non-uniform lattices using the lattice Boltzmann method. Int Commun Heat Mass Transf 36:322–328 Mondal B, Siva Rama Krishna B, Mishra SC, Kush T (2009) Solving transient heat conduction problems on uniform and non-uniform lattices using the lattice Boltzmann method. Int Commun Heat Mass Transf 36:322–328
20.
Zurück zum Zitat NorAzwadi CS, Tanahashi T (2007) Three-dimensional thermal lattice Boltzmann simulation of natural convection in a cubic cavity. Int J Mod Phys B 21:87–96CrossRef NorAzwadi CS, Tanahashi T (2007) Three-dimensional thermal lattice Boltzmann simulation of natural convection in a cubic cavity. Int J Mod Phys B 21:87–96CrossRef
Metadaten
Titel
An Efficient Lattice Boltzmann Model for 3D Transient Flows
verfasst von
Raoudha Chaabane
Abdelmajid Jemni
Fethi Aloui
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-8274-2_28