2015 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Transactions on Edutainment XI
KACA is a typical local-recoding k-anonymization algorithm. It can generate k-anonymizing data with high quality. The main drawback of KACA algorithm is its high computational cost in dealing with large dataset. To remedy this problem, we propose an new efficient k-anonymization algorithm. The main idea of the proposed algorithm is that we first adopt the c-modes algorithm to partition the whole dataset into some large clusters, and then take KACA algorithm to k-anonymize each cluster separately. Finally, comprehensive experiments demonstrate the effectiveness of our algorithm.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information (abstract). In: Proceedings of the 17th ACM-SIGMOD, p. 188 (1998) Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information (abstract). In: Proceedings of the 17th ACM-SIGMOD, p. 188 (1998)
2.
Zurück zum Zitat LeFevre, K., DeWitt, D., Ramakrishnan, R.: Incognito: efficient full-domain k-anonymity. In: Proceedings of the SIGMOD 2005, pp. 49–60 (2005) LeFevre, K., DeWitt, D., Ramakrishnan, R.: Incognito: efficient full-domain k-anonymity. In: Proceedings of the SIGMOD 2005, pp. 49–60 (2005)
3.
Zurück zum Zitat Li, J., Wong, R.C.-W., Fu, A.W.-C., Pei, J.: Achieving k-anonymity by clustering in attribute hierarchical structures. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 405–416. Springer, Heidelberg (2006) CrossRef Li, J., Wong, R.C.-W., Fu, A.W.-C., Pei, J.: Achieving
k-anonymity by clustering in attribute hierarchical structures. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 405–416. Springer, Heidelberg (2006)
CrossRef
4.
Zurück zum Zitat Aggarwal, G., Feder, T., Kenthapadi, K. et al.: Achieving anonymity via clustering. In: Proceedings of the 25th ACM SIGMOD, pp. 153–162 (2006) Aggarwal, G., Feder, T., Kenthapadi, K. et al.: Achieving anonymity via clustering. In: Proceedings of the 25th ACM SIGMOD, pp. 153–162 (2006)
5.
Zurück zum Zitat Zhu, H., Ye, X.: Achieving k-anonymity via a density-based clustering method. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 745–752. Springer, Heidelberg (2007) CrossRef Zhu, H., Ye, X.: Achieving
k-anonymity via a density-based clustering method. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 745–752. Springer, Heidelberg (2007)
CrossRef
6.
Zurück zum Zitat Byun, J.-W., Kamra, A., Bertino, E., Li, N.: Efficient k-anonymization using clustering techniques. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 188–200. Springer, Heidelberg (2007) CrossRef Byun, J.-W., Kamra, A., Bertino, E., Li, N.: Efficient
k-anonymization using clustering techniques. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 188–200. Springer, Heidelberg (2007)
CrossRef
7.
Zurück zum Zitat Xu, J., Wang, W., Pei, J., et al.: Utility-based anonymization for privacy preservation with less information loss. ACM SIGKDD Explor. Newslett. 8(2), 21–30 (2006) CrossRef Xu, J., Wang, W., Pei, J., et al.: Utility-based anonymization for privacy preservation with less information loss. ACM SIGKDD Explor. Newslett.
8(2), 21–30 (2006)
CrossRef
8.
Zurück zum Zitat Grigorios, L., Shao, J.: An efficient clustering algorithm for k-anonymisation. J. Comput. Sci. Technol. 23(2), 188–202 (2008) CrossRef Grigorios, L., Shao, J.: An efficient clustering algorithm for k-anonymisation. J. Comput. Sci. Technol.
23(2), 188–202 (2008)
CrossRef
9.
Zurück zum Zitat Tapas, K., David, M., Mount, M., et al.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002) CrossRef Tapas, K., David, M., Mount, M., et al.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell.
24(7), 881–892 (2002)
CrossRef
10.
Zurück zum Zitat Chiu, C.-C., Tsai, C.-Y.: A k-anonymity clustering method for effective data privacy preservation. In: Alhajj, R., Gao, H., Li, X., Li, J., Zaïane, O.R. (eds.) ADMA 2007. LNCS (LNAI), vol. 4632, pp. 89–99. Springer, Heidelberg (2007) CrossRef Chiu, C.-C., Tsai, C.-Y.: A
k-anonymity clustering method for effective data privacy preservation. In: Alhajj, R., Gao, H., Li, X., Li, J., Zaïane, O.R. (eds.) ADMA 2007. LNCS (LNAI), vol. 4632, pp. 89–99. Springer, Heidelberg (2007)
CrossRef
11.
Zurück zum Zitat Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Discov. 2(3), 283–304 (1998) CrossRef Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Discov.
2(3), 283–304 (1998)
CrossRef
12.
Zurück zum Zitat Chen, X., Pang, J.: Protecting query privacy in location-based services. Geoinformatica 18, 1–39 (2013) Chen, X., Pang, J.: Protecting query privacy in location-based services. Geoinformatica
18, 1–39 (2013)
13.
Zurück zum Zitat Damiani, M.L.: Location privacy models in mobile applications: conceptual view and research directions. Geoinformatica 18, 1–24 (2014) CrossRef Damiani, M.L.: Location privacy models in mobile applications: conceptual view and research directions. Geoinformatica
18, 1–24 (2014)
CrossRef
- Titel
- An Efficient Local-Recoding k-Anonymization Algorithm Based on Clusterin
- DOI
- https://doi.org/10.1007/978-3-662-48247-6_24
- Autoren:
-
Lifeng Yu
Qiong Yang
- Verlag
- Springer Berlin Heidelberg
- Sequenznummer
- 24