Skip to main content
Erschienen in: Cognitive Computation 6/2021

10.11.2021

An Efficient Medical Assistive Diagnostic Algorithm for Visualisation of Structural and Tissue Details in CT and MRI Fusion

verfasst von: Bhawna Goyal, Ayush Dogra, Rahul Khoond, Fadi Al-Turjman

Erschienen in: Cognitive Computation | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Clinicians often have to switch amongst radiographic scans in order to trace out patterns in various tissue striations. The conglomerated view of structural and anatomical view in medical scans can facilitate the physicians to execute precise diagnosis, intraoperative guidance, and planning preoperative procedures. Due to inherent physical limitations, source images have prevalence of noise and ambient light. This results in lower contrast and limited visual perception of striations and tissues in fused radiographic images. This paper proposes a concatenated filtering image fusion approach employing space segmentation and non-prior-based contrast enhancement. The latent row rank theory approach implements sub-space segmentation addressing the issue of noise removal, and the non-local-prior-based enhancement removes the ambient light from source images fortifying edge details and information. This complex fusion framework is designed in non-sub-sampled contourlet transform which exhibits computational efficiency. The final fused image obtained using local Laplacian energy fusion rule results in improved localisation of structural and anatomical details of brain tissue and outperforms high-performing fusion methods in literature both objectively with high fusion rate along with better quality visual results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu Y, Chen X, Wang Z, Wang ZJ, Ward RK, Wang X. Deep learning for pixel-level image fusion: recent advances and future prospects. Inf Fusion. 2018;42:158–73.CrossRef Liu Y, Chen X, Wang Z, Wang ZJ, Ward RK, Wang X. Deep learning for pixel-level image fusion: recent advances and future prospects. Inf Fusion. 2018;42:158–73.CrossRef
2.
Zurück zum Zitat Liu Y, Chen X, Ward RK, Wang ZJ. Image fusion with convolutional sparse representation. IEEE Signal Process Lett. 2016;23(12):1882–6.CrossRef Liu Y, Chen X, Ward RK, Wang ZJ. Image fusion with convolutional sparse representation. IEEE Signal Process Lett. 2016;23(12):1882–6.CrossRef
3.
Zurück zum Zitat Shen R, Cheng I, Basu A. Cross-scale coefficient selection for volumetric medical image fusion. IEEE Trans Biomed Eng. 2013;60(4):1069–79.CrossRef Shen R, Cheng I, Basu A. Cross-scale coefficient selection for volumetric medical image fusion. IEEE Trans Biomed Eng. 2013;60(4):1069–79.CrossRef
4.
Zurück zum Zitat Yin M, Liu X, Liu Y, Chen X. Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain. IEEE Trans Instrum Meas. 2018;68(1):49–64.CrossRef Yin M, Liu X, Liu Y, Chen X. Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain. IEEE Trans Instrum Meas. 2018;68(1):49–64.CrossRef
5.
Zurück zum Zitat Dogra A, Goyal B, Agrawal S. From multi-scale decomposition to non-multi-scale decomposition methods: a comprehensive survey of image fusion techniques and its applications. IEEE Access. 2017;5:16040–67.CrossRef Dogra A, Goyal B, Agrawal S. From multi-scale decomposition to non-multi-scale decomposition methods: a comprehensive survey of image fusion techniques and its applications. IEEE Access. 2017;5:16040–67.CrossRef
6.
Zurück zum Zitat Goyal B, Dogra A, Agrawal S, Sohi BS, Sharma A. Image denoising review: from classical to state-of-the-art approaches. Inf Fusion. 2020;55:220–44.CrossRef Goyal B, Dogra A, Agrawal S, Sohi BS, Sharma A. Image denoising review: from classical to state-of-the-art approaches. Inf Fusion. 2020;55:220–44.CrossRef
7.
Zurück zum Zitat Liu Y, Chen X, Ward RK, Wang ZJ. Medical image fusion via convolutional sparsity based morphological component analysis. IEEE Signal Process Lett. 2019;26(3):485–9.CrossRef Liu Y, Chen X, Ward RK, Wang ZJ. Medical image fusion via convolutional sparsity based morphological component analysis. IEEE Signal Process Lett. 2019;26(3):485–9.CrossRef
8.
Zurück zum Zitat Bhatnagar G, Wu QMJ, Liu Z. Directive contrast based multimodal medical image fusion in NSCT domain. IEEE Trans Multimedia. 2013;15(5):1014–24.CrossRef Bhatnagar G, Wu QMJ, Liu Z. Directive contrast based multimodal medical image fusion in NSCT domain. IEEE Trans Multimedia. 2013;15(5):1014–24.CrossRef
9.
Zurück zum Zitat Kumar BKS. Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform. Signal Image Video Process. 2012. Kumar BKS. Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform. Signal Image Video Process. 2012.
10.
Zurück zum Zitat Almurib HAF, Kumar TN, Lombardi F. Approximate DCT image compression using inexact computing. IEEE Trans Comput. 2017;67(2):149–59.MathSciNetCrossRef Almurib HAF, Kumar TN, Lombardi F. Approximate DCT image compression using inexact computing. IEEE Trans Comput. 2017;67(2):149–59.MathSciNetCrossRef
11.
Zurück zum Zitat Wang W, Chang F. A multi-focus image fusion method based on Laplacian pyramid. J Comput. 2011;6(12):2559–66.CrossRef Wang W, Chang F. A multi-focus image fusion method based on Laplacian pyramid. J Comput. 2011;6(12):2559–66.CrossRef
12.
Zurück zum Zitat Liu Y, Liu S, Wang Z. Multi-focus Image Fusion with Dense SIFT. Inf Fusion. 2015;23(1):139–55.CrossRef Liu Y, Liu S, Wang Z. Multi-focus Image Fusion with Dense SIFT. Inf Fusion. 2015;23(1):139–55.CrossRef
13.
Zurück zum Zitat Bai X, Zhang Y, Zhou F, Xue B. Quadtree-based multi-focus image fusion using a weighted focus-measure. Inf Fusion. 2015;22:105–18.CrossRef Bai X, Zhang Y, Zhou F, Xue B. Quadtree-based multi-focus image fusion using a weighted focus-measure. Inf Fusion. 2015;22:105–18.CrossRef
14.
Zurück zum Zitat Bhateja V, Patel H, Krishn A, Sahu A, Lay-Ekuakille A. Multimodal medical image sensor fusion framework using cascade of wavelet and contourlet transform domains. IEEE Sens J. 2015;15(12):6783–90.CrossRef Bhateja V, Patel H, Krishn A, Sahu A, Lay-Ekuakille A. Multimodal medical image sensor fusion framework using cascade of wavelet and contourlet transform domains. IEEE Sens J. 2015;15(12):6783–90.CrossRef
15.
Zurück zum Zitat Srivastava R, Prakash O, Khare A. Local energy-based multimodal medical image fusion in curvelet domain. IET Comput Vis. 2016;10(6):513–27.CrossRef Srivastava R, Prakash O, Khare A. Local energy-based multimodal medical image fusion in curvelet domain. IET Comput Vis. 2016;10(6):513–27.CrossRef
16.
Zurück zum Zitat Kumar BKS. Image fusion based on pixel significance using cross bilateral filter. Signal Image Video Process. 2015;9(5):1193–204.CrossRef Kumar BKS. Image fusion based on pixel significance using cross bilateral filter. Signal Image Video Process. 2015;9(5):1193–204.CrossRef
17.
Zurück zum Zitat Li S, Kang X, Hu J. Image fusion with guided filtering. IEEE Trans Image Process. 2013;22(7):2864–75.CrossRef Li S, Kang X, Hu J. Image fusion with guided filtering. IEEE Trans Image Process. 2013;22(7):2864–75.CrossRef
18.
Zurück zum Zitat Bavirisetti DP, Dhuli R. Fusion of infrared and visible sensor images based on anisotropic diffusion and Karhunen-Loeve transform. IEEE Sens J. 2015;16(1):203–9.CrossRef Bavirisetti DP, Dhuli R. Fusion of infrared and visible sensor images based on anisotropic diffusion and Karhunen-Loeve transform. IEEE Sens J. 2015;16(1):203–9.CrossRef
19.
Zurück zum Zitat Bavirisetti DP, Dhuli R. Two-scale image fusion of visible and infrared images using saliency detection. Infrared Phys Technol. 2016;76:52–64.CrossRef Bavirisetti DP, Dhuli R. Two-scale image fusion of visible and infrared images using saliency detection. Infrared Phys Technol. 2016;76:52–64.CrossRef
20.
Zurück zum Zitat Zhan K, Xie Y, Wang H, Min Y. Fast filtering image fusion. J Electron Imaging. 2017;26(6):063004. Zhan K, Xie Y, Wang H, Min Y. Fast filtering image fusion. J Electron Imaging. 2017;26(6):063004.
21.
Zurück zum Zitat Li W, Xie Y, Zhou H, Han Y, Zhan K. Structure-aware image fusion. Optik. 2018;172:1–11.CrossRef Li W, Xie Y, Zhou H, Han Y, Zhan K. Structure-aware image fusion. Optik. 2018;172:1–11.CrossRef
22.
Zurück zum Zitat Xiao C, Gan J. Fast image dehazing using guided joint bilateral filter. Vis Comput. 2012;28(6–8):713–21.CrossRef Xiao C, Gan J. Fast image dehazing using guided joint bilateral filter. Vis Comput. 2012;28(6–8):713–21.CrossRef
23.
Zurück zum Zitat Bavirisetti DP, Xiao G, Zhao J, Dhuli R, Liu G. Multi-scale guided image and video fusion: a fast and efficient approach. Circuits Syst Signal Process. 2019;38(12):5576–605.CrossRef Bavirisetti DP, Xiao G, Zhao J, Dhuli R, Liu G. Multi-scale guided image and video fusion: a fast and efficient approach. Circuits Syst Signal Process. 2019;38(12):5576–605.CrossRef
24.
Zurück zum Zitat Daniel E. Optimum wavelet-based homomorphic medical image fusion using hybrid genetic–grey wolf optimization algorithm. IEEE Sens J. 2018;18(16):6804–11.CrossRef Daniel E. Optimum wavelet-based homomorphic medical image fusion using hybrid genetic–grey wolf optimization algorithm. IEEE Sens J. 2018;18(16):6804–11.CrossRef
25.
Zurück zum Zitat Xu X, Shan D, Wang G, Jiang X. Multimodal medical image fusion using PCNN optimized by the QPSO algorithm. Appl Soft Comput. 2016;46:588–95.CrossRef Xu X, Shan D, Wang G, Jiang X. Multimodal medical image fusion using PCNN optimized by the QPSO algorithm. Appl Soft Comput. 2016;46:588–95.CrossRef
26.
Zurück zum Zitat Liu Y, Wang Z. Simultaneous image fusion and denoising with adaptive sparse representation. IET Image Process. 2015;9(5):347–57.CrossRef Liu Y, Wang Z. Simultaneous image fusion and denoising with adaptive sparse representation. IET Image Process. 2015;9(5):347–57.CrossRef
27.
Zurück zum Zitat Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications of deep learning and reinforcement learning to biological data. IEEE Trans Neural Netw Learn Syst. 2018;29(6):2063–79.MathSciNetCrossRef Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications of deep learning and reinforcement learning to biological data. IEEE Trans Neural Netw Learn Syst. 2018;29(6):2063–79.MathSciNetCrossRef
28.
Zurück zum Zitat Dou W, Chen Y, Li X, Sui DZ. A general framework for component substitution image fusion: an implementation using the fast image fusion method. Comput Geosci. 2007;33(2):219–28.CrossRef Dou W, Chen Y, Li X, Sui DZ. A general framework for component substitution image fusion: an implementation using the fast image fusion method. Comput Geosci. 2007;33(2):219–28.CrossRef
29.
Zurück zum Zitat Kaiser MS, Mahmud M, Noor MBT, Zenia NZ, Al Mamun S, Mahmud KA, Azad S, Aradhya VM, Stephan P, Stephan T, Kannan R. iWorkSafe: towards healthy workplaces during COVID-19 with an intelligent pHealth App for industrial settings. IEEE Access. 2021;9:13814–28.CrossRef Kaiser MS, Mahmud M, Noor MBT, Zenia NZ, Al Mamun S, Mahmud KA, Azad S, Aradhya VM, Stephan P, Stephan T, Kannan R. iWorkSafe: towards healthy workplaces during COVID-19 with an intelligent pHealth App for industrial settings. IEEE Access. 2021;9:13814–28.CrossRef
30.
Zurück zum Zitat Ruiz J, Mahmud M, Modasshir M, Kaiser MS, Alzheimer’s Disease Neuroimaging Initiative. 3D DenseNet Ensemble in 4-Way Classification of Alzheimer’s Disease. In: Mahmud M, Vassanelli S, Kaiser MS, Zhong N, editors. International Conference on Brain Informatics. Cham: Springer; 2020. p. 85–96.CrossRef Ruiz J, Mahmud M, Modasshir M, Kaiser MS, Alzheimer’s Disease Neuroimaging Initiative. 3D DenseNet Ensemble in 4-Way Classification of Alzheimer’s Disease. In: Mahmud M, Vassanelli S, Kaiser MS, Zhong N, editors. International Conference on Brain Informatics. Cham: Springer; 2020. p. 85–96.CrossRef
31.
Zurück zum Zitat Toet A, Hogervorst MA, Nikolov SG, Lewis JJ, Dixon TD, Bull DR, Canagarajah CN. Towards cognitive image fusion. Inf Fusion. 2010;11(2):95–113.CrossRef Toet A, Hogervorst MA, Nikolov SG, Lewis JJ, Dixon TD, Bull DR, Canagarajah CN. Towards cognitive image fusion. Inf Fusion. 2010;11(2):95–113.CrossRef
32.
Zurück zum Zitat Shah SA, Ahmad J, Masood F, Shah SY, Pervaiz H, Taylor W, Imran MA, Abbasi QH. Privacy-preserving wandering behavior sensing in dementia patients using modified logistic and dynamic Newton Leipnik maps. IEEE Sens J. 2020;21(3):3669–79.CrossRef Shah SA, Ahmad J, Masood F, Shah SY, Pervaiz H, Taylor W, Imran MA, Abbasi QH. Privacy-preserving wandering behavior sensing in dementia patients using modified logistic and dynamic Newton Leipnik maps. IEEE Sens J. 2020;21(3):3669–79.CrossRef
33.
Zurück zum Zitat Ullah F, Habib MA, Farhan M, Khalid S, Durrani MY, Jabbar S. Semantic interoperability for big-data in heterogeneous IoT infrastructure for healthcare. Sustai Cities Soc. 2017;34:90–6.CrossRef Ullah F, Habib MA, Farhan M, Khalid S, Durrani MY, Jabbar S. Semantic interoperability for big-data in heterogeneous IoT infrastructure for healthcare. Sustai Cities Soc. 2017;34:90–6.CrossRef
34.
Zurück zum Zitat Cui TJ, Zoha A, Li L, Shah SA, Alomainy A, Imran MA, Abbasi QH. Wireless on walls: revolutionizing the future of health care. IEEE Antennas Propag Mag. 2020. Cui TJ, Zoha A, Li L, Shah SA, Alomainy A, Imran MA, Abbasi QH. Wireless on walls: revolutionizing the future of health care. IEEE Antennas Propag Mag. 2020.
35.
Zurück zum Zitat Noor MBT, Zenia NZ, Kaiser MS, Al Mamun S, Mahmud M. Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease Parkinson’s disease and schizophrenia. Brain Inform. 2020;7(1):1–21.CrossRef Noor MBT, Zenia NZ, Kaiser MS, Al Mamun S, Mahmud M. Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease Parkinson’s disease and schizophrenia. Brain Inform. 2020;7(1):1–21.CrossRef
36.
Zurück zum Zitat Bavirisetti DP, Kollu V, Gang X, Dhuli R. Fusion of MRI and CT images using guided image filter and image statistics. Int J Imaging Syst Technol. 2017;27(3):227–37.CrossRef Bavirisetti DP, Kollu V, Gang X, Dhuli R. Fusion of MRI and CT images using guided image filter and image statistics. Int J Imaging Syst Technol. 2017;27(3):227–37.CrossRef
37.
Zurück zum Zitat Liang X, Hu P, Zhang L, Sun J, Yin G. MCFNet: multi-layer concatenation fusion network for medical images fusion. IEEE Sens J. 2019;19(16):7107–19.CrossRef Liang X, Hu P, Zhang L, Sun J, Yin G. MCFNet: multi-layer concatenation fusion network for medical images fusion. IEEE Sens J. 2019;19(16):7107–19.CrossRef
38.
Zurück zum Zitat Yang Y, Wu J, Huang S, Fang Y, Lin P, Que Y. Multimodal medical image fusion based on fuzzy discrimination with structural patch decomposition. IEEE J Biomed Health Inform. 2018;23(4):1647–60.CrossRef Yang Y, Wu J, Huang S, Fang Y, Lin P, Que Y. Multimodal medical image fusion based on fuzzy discrimination with structural patch decomposition. IEEE J Biomed Health Inform. 2018;23(4):1647–60.CrossRef
40.
Zurück zum Zitat Zhu Z, Zheng M, Qi G, Wang D, Xiang Y. A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain. IEEE Access. 2017;7:20811–24.CrossRef Zhu Z, Zheng M, Qi G, Wang D, Xiang Y. A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain. IEEE Access. 2017;7:20811–24.CrossRef
41.
Zurück zum Zitat Liu G, Lin Z, Yong Y. Robust subspace segmentation by low-rank representation. Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 663–670. Liu G, Lin Z, Yong Y. Robust subspace segmentation by low-rank representation. Proceedings of the 27th international conference on machine learning (ICML-10); 2010. p. 663–670.
42.
Zurück zum Zitat Berman D, Avidan S. Non-local image dehazing. Proc IEEE Conf Comput Vis Pattern Recognit. 2016;1674–1682. Berman D, Avidan S. Non-local image dehazing. Proc IEEE Conf Comput Vis Pattern Recognit. 2016;1674–1682.
43.
Zurück zum Zitat Xydeas CS, Petrovic V. Objective image fusion performance measure. Electron Lett. 2000;36(4):308–9.CrossRef Xydeas CS, Petrovic V. Objective image fusion performance measure. Electron Lett. 2000;36(4):308–9.CrossRef
Metadaten
Titel
An Efficient Medical Assistive Diagnostic Algorithm for Visualisation of Structural and Tissue Details in CT and MRI Fusion
verfasst von
Bhawna Goyal
Ayush Dogra
Rahul Khoond
Fadi Al-Turjman
Publikationsdatum
10.11.2021
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 6/2021
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-021-09958-y

Weitere Artikel der Ausgabe 6/2021

Cognitive Computation 6/2021 Zur Ausgabe