Skip to main content

26.02.2025 | Connected Automated Vehicles and ITS, Vehicle Dynamics and Control

An Efficient Optimization-Based Framework for Trajectory Planning with Enhanced Hybrid A* and A Modified Travel Corridor Generation Strategy

verfasst von: Yu Xiong, Zhenhong Yao

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The combination of Hybrid A* and the optimization-based approach is commonly utilized for trajectory planning in intricate automated parking scenarios. The numerical optimization procedure relies heavily on initial guesses derived from search-/sample-based methods. However, in intricate scenarios with tight passageways, the computational cost of finding an appropriate initial guess may be expensive. To address this issue, this paper presents a two-stage trajectory planner comprised of a coarse trajectory searching stage and a trajectory optimization stage. The primary contribution lies in the coarse trajectory searching stage, wherein a guiding-and-detecting-based Hybrid A* is developed to quickly find the initial path in intricate scenarios. In the coarse trajectory searching stage, the enhanced A* approach and path-trimming strategy are utilized to produce a distance matrix-based guiding path. Subsequently, under the guidance of the path, the guiding-and-detecting-based Hybrid A* is employed to quickly plan a collision-free rough path. A time-optimal velocity profile is then attached to the rough path, turning it into a coarse trajectory. The coarse trajectory serves as the initial guess for the subsequent trajectory optimization stage. The simulation results demonstrate the effectiveness and robustness of our proposed planner.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Andreasson, H., Saarinen, J., Cirillo, M., Stoyanov, T., Lilienthal, A. J. (2016). Fast, continuous state path smoothing to improve navigation accuracy. In: IEEE international conference on robotics & automation. Andreasson, H., Saarinen, J., Cirillo, M., Stoyanov, T., Lilienthal, A. J. (2016). Fast, continuous state path smoothing to improve navigation accuracy. In: IEEE international conference on robotics & automation.
Zurück zum Zitat Bitar, G., Martinsen, A. B., Lekkas, A. M., & Breivik, M. (2020). Two-stage optimized trajectory planning for asvs under polygonal obstacle constraints: Theory and experiments. IEEE Access, 8, 199953–199969.CrossRef Bitar, G., Martinsen, A. B., Lekkas, A. M., & Breivik, M. (2020). Two-stage optimized trajectory planning for asvs under polygonal obstacle constraints: Theory and experiments. IEEE Access, 8, 199953–199969.CrossRef
Zurück zum Zitat Cao, D., Wang, X., Li, L., Lv, C., Na, X., Xing, Y., Li, X., Li, Y., Chen, Y., & Wang, F.-Y.J.I.T.O.I.V. (2022). Future directions of intelligent vehicles: Potentials, possibilities, and perspectives. IEEE Transactions on Intelligent Vehicles, 7(1), 7–10.MATHCrossRef Cao, D., Wang, X., Li, L., Lv, C., Na, X., Xing, Y., Li, X., Li, Y., Chen, Y., & Wang, F.-Y.J.I.T.O.I.V. (2022). Future directions of intelligent vehicles: Potentials, possibilities, and perspectives. IEEE Transactions on Intelligent Vehicles, 7(1), 7–10.MATHCrossRef
Zurück zum Zitat Claussmann, L., Revilloud, M., Gruyer, D., & Glaser, S. (2020). A review of motion planning for highway autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 21(5), 1826–1848.MATHCrossRef Claussmann, L., Revilloud, M., Gruyer, D., & Glaser, S. (2020). A review of motion planning for highway autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 21(5), 1826–1848.MATHCrossRef
Zurück zum Zitat Dolgov, D., Thrun, S., Montemerlo, M., & Diebel, J. J. (2008). Practical search techniques in path planning for autonomous driving. Ann Arbor, 1001(48105), 18–80.MATH Dolgov, D., Thrun, S., Montemerlo, M., & Diebel, J. J. (2008). Practical search techniques in path planning for autonomous driving. Ann Arbor, 1001(48105), 18–80.MATH
Zurück zum Zitat Dolgov, D., Thrun, S., Montemerlo, M., & Diebel, J. (2010). Path planning for autonomous vehicles in unknown semi-structured environments. The International Journal of Robotics Research, 29(5), 485–501.MATHCrossRef Dolgov, D., Thrun, S., Montemerlo, M., & Diebel, J. (2010). Path planning for autonomous vehicles in unknown semi-structured environments. The International Journal of Robotics Research, 29(5), 485–501.MATHCrossRef
Zurück zum Zitat Dong, Y., Camci, E., & Kayacan, E. (2017). Faster rrt-based nonholonomic path planning in 2d building environments using skeleton-constrained path biasing. Journal of Intelligent & Robotic Systems, 89(3–4), 387–401. Dong, Y., Camci, E., & Kayacan, E. (2017). Faster rrt-based nonholonomic path planning in 2d building environments using skeleton-constrained path biasing. Journal of Intelligent & Robotic Systems, 89(3–4), 387–401.
Zurück zum Zitat Ganganath, N., Cheng, C.-T., & Tse, C. K. (2015). A constraint-aware heuristic path planner for finding energy-efficient paths on uneven terrains. IEEE Transactions on Industrial Informatics, 11(3), 601–611.MATHCrossRef Ganganath, N., Cheng, C.-T., & Tse, C. K. (2015). A constraint-aware heuristic path planner for finding energy-efficient paths on uneven terrains. IEEE Transactions on Industrial Informatics, 11(3), 601–611.MATHCrossRef
Zurück zum Zitat Goerzen, C., Kong, Z., & Mettler, B. (2009). A survey of motion planning algorithms from the perspective of autonomous uav guidance. Journal of Intelligent and Robotic Systems, 57(1–4), 65–100.MATH Goerzen, C., Kong, Z., & Mettler, B. (2009). A survey of motion planning algorithms from the perspective of autonomous uav guidance. Journal of Intelligent and Robotic Systems, 57(1–4), 65–100.MATH
Zurück zum Zitat Guo, Y., Yao, D., Li, B., Gao, H., & Li, L. (2023). Down-sized initialization for optimization-based unstructured trajectory planning by only optimizing critical variables. IEEE Transactions on Intelligent Vehicles, 8(1), 709–720.MATHCrossRef Guo, Y., Yao, D., Li, B., Gao, H., & Li, L. (2023). Down-sized initialization for optimization-based unstructured trajectory planning by only optimizing critical variables. IEEE Transactions on Intelligent Vehicles, 8(1), 709–720.MATHCrossRef
Zurück zum Zitat Hart, P. E., Nilsson, N. J., & Raphael, B. J. I. T. O. S. S. (1972). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 28–29.MATH Hart, P. E., Nilsson, N. J., & Raphael, B. J. I. T. O. S. S. (1972). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 28–29.MATH
Zurück zum Zitat Heiden, E., Palmieri, L., Bruns, L., Arras, K. O., Sukhatme, G. S., & Koenig, S. (2021). Bench-mr: A motion planning benchmark for wheeled mobile robots. IEEE Robotics and Automation Letters, 6(3), 4536–4543.CrossRef Heiden, E., Palmieri, L., Bruns, L., Arras, K. O., Sukhatme, G. S., & Koenig, S. (2021). Bench-mr: A motion planning benchmark for wheeled mobile robots. IEEE Robotics and Automation Letters, 6(3), 4536–4543.CrossRef
Zurück zum Zitat Hull, D. G. (1997). Conversion of optimal control problems into parameter optimization problems. Journal of Guidance, Control, and Dynamics, 20(1), 57–60.MATHCrossRef Hull, D. G. (1997). Conversion of optimal control problems into parameter optimization problems. Journal of Guidance, Control, and Dynamics, 20(1), 57–60.MATHCrossRef
Zurück zum Zitat Kondak, K., & Hommel, G. (2001). Computation of time optimal movements for autonomous parking of non-holonomic mobile platforms. IEEE.MATHCrossRef Kondak, K., & Hommel, G. (2001). Computation of time optimal movements for autonomous parking of non-holonomic mobile platforms. IEEE.MATHCrossRef
Zurück zum Zitat Lavalle, S. J. R. R. (1998). Rapidly-exploring random trees: A new tool for path planning. Lavalle, S. J. R. R. (1998). Rapidly-exploring random trees: A new tool for path planning.
Zurück zum Zitat Lavalle, S. M., Kuffner, J. J. J. A., & Robotics, C. (2001). Rapidly-exploring random trees: Progress and prospects (pp. 303–307). CRC Press.MATH Lavalle, S. M., Kuffner, J. J. J. A., & Robotics, C. (2001). Rapidly-exploring random trees: Progress and prospects (pp. 303–307). CRC Press.MATH
Zurück zum Zitat Li, B., Acarman, T., Peng, X., Zhang, Y., Bian, X., & Kong, Q. (2020a). Maneuver planning for automatic parking with safe travel corridors: A numerical optimal control approach. ITMO Univ St Petersburg. Li, B., Acarman, T., Peng, X., Zhang, Y., Bian, X., & Kong, Q. (2020a). Maneuver planning for automatic parking with safe travel corridors: A numerical optimal control approach. ITMO Univ St Petersburg.
Zurück zum Zitat Li, B., Acarman, T., Zhang, Y., Ouyang, Y., Yaman, C., Kong, Q., Zhong, X., & Peng, X. (2022). Optimization-based trajectory planning for autonomous parking with irregularly placed obstacles: a lightweight iterative framework. IEEE Transactions on Intelligent Transportation Systems, 23(8), 11970–11981.CrossRef Li, B., Acarman, T., Zhang, Y., Ouyang, Y., Yaman, C., Kong, Q., Zhong, X., & Peng, X. (2022). Optimization-based trajectory planning for autonomous parking with irregularly placed obstacles: a lightweight iterative framework. IEEE Transactions on Intelligent Transportation Systems, 23(8), 11970–11981.CrossRef
Zurück zum Zitat Li, B., Acarman, T., Zhang, Y., Zhang, L., Yaman, C., & Kong, Q. (2020b). Tractor-trailer vehicle trajectory planning in narrow environments with a progressively constrained optimal control approach. IEEE Transactions on Intelligent Vehicles, 5(3), 414–425.MATHCrossRef Li, B., Acarman, T., Zhang, Y., Zhang, L., Yaman, C., & Kong, Q. (2020b). Tractor-trailer vehicle trajectory planning in narrow environments with a progressively constrained optimal control approach. IEEE Transactions on Intelligent Vehicles, 5(3), 414–425.MATHCrossRef
Zurück zum Zitat Li, B., Ouyang, Y., Zhang, Y., Acarman, T., Kong, Q., & Shao, Z. (2021). Optimal cooperative maneuver planning for multiple nonholonomic robots in a tiny environment via adaptive-scaling constrained optimization. IEEE Robotics and Automation Letters, 6(2), 1511–1518.CrossRef Li, B., Ouyang, Y., Zhang, Y., Acarman, T., Kong, Q., & Shao, Z. (2021). Optimal cooperative maneuver planning for multiple nonholonomic robots in a tiny environment via adaptive-scaling constrained optimization. IEEE Robotics and Automation Letters, 6(2), 1511–1518.CrossRef
Zurück zum Zitat Li, B., & Shao, Z. (2015). A unified motion planning method for parking an autonomous vehicle in the presence of irregularly placed obstacles. Knowledge-Based Systems, 86, 11–20.MATHCrossRef Li, B., & Shao, Z. (2015). A unified motion planning method for parking an autonomous vehicle in the presence of irregularly placed obstacles. Knowledge-Based Systems, 86, 11–20.MATHCrossRef
Zurück zum Zitat Li, B., & Shao, Z. (2016). Precise trajectory optimization for articulated wheeled vehicles in cluttered environments. Advances in Engineering Software, 92, 40–47.MATHCrossRef Li, B., & Shao, Z. (2016). Precise trajectory optimization for articulated wheeled vehicles in cluttered environments. Advances in Engineering Software, 92, 40–47.MATHCrossRef
Zurück zum Zitat Li, B., Wang, K., & Shao, Z. (2016). Time-optimal maneuver planning in automatic parallel parking using a simultaneous dynamic optimization approach. IEEE Transactions on Intelligent Transportation Systems, 17(11), 3263–3274.MATHCrossRef Li, B., Wang, K., & Shao, Z. (2016). Time-optimal maneuver planning in automatic parallel parking using a simultaneous dynamic optimization approach. IEEE Transactions on Intelligent Transportation Systems, 17(11), 3263–3274.MATHCrossRef
Zurück zum Zitat Lim, W., Lee, S., Sunwoo, M., & Jo, K. (2018). Hierarchical trajectory planning of an autonomous car based on the integration of a sampling and an optimization method. IEEE Transactions on Intelligent Transportation Systems, 19(2), 613–626.MATHCrossRef Lim, W., Lee, S., Sunwoo, M., & Jo, K. (2018). Hierarchical trajectory planning of an autonomous car based on the integration of a sampling and an optimization method. IEEE Transactions on Intelligent Transportation Systems, 19(2), 613–626.MATHCrossRef
Zurück zum Zitat Manzinger, S., Pek, C., & Althoff, M. (2021). Using reachable sets for trajectory planning of automated vehicles. IEEE Transactions on Intelligent Vehicles, 6(2), 232–248.MATHCrossRef Manzinger, S., Pek, C., & Althoff, M. (2021). Using reachable sets for trajectory planning of automated vehicles. IEEE Transactions on Intelligent Vehicles, 6(2), 232–248.MATHCrossRef
Zurück zum Zitat Marzban, H. R., & Hoseini, S. M. (2015). An efficient discretization scheme for solving nonlinear optimal control problems with multiple time delays. Optimal Control Applications and Methods, 37(4), 682–707.MathSciNetMATHCrossRef Marzban, H. R., & Hoseini, S. M. (2015). An efficient discretization scheme for solving nonlinear optimal control problems with multiple time delays. Optimal Control Applications and Methods, 37(4), 682–707.MathSciNetMATHCrossRef
Zurück zum Zitat Paden, B., Cap, M., Yong, S. Z., Yershov, D., & Frazzoli, E. (2016). A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 1(1), 33–55.MATHCrossRef Paden, B., Cap, M., Yong, S. Z., Yershov, D., & Frazzoli, E. (2016). A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 1(1), 33–55.MATHCrossRef
Zurück zum Zitat Palmieri, L., Koenig, S., & Arras, K. O. (2016). Rrt-based nonholonomic motion planning using any-angle path biasing. IEEE.CrossRef Palmieri, L., Koenig, S., & Arras, K. O. (2016). Rrt-based nonholonomic motion planning using any-angle path biasing. IEEE.CrossRef
Zurück zum Zitat Sheng, W., Li, B., & Zhong, X. (2021). Autonomous parking trajectory planning with tiny passages: A combination of multistage hybrid a-star algorithm and numerical optimal control. IEEE Access, 9, 102801–102810.CrossRef Sheng, W., Li, B., & Zhong, X. (2021). Autonomous parking trajectory planning with tiny passages: A combination of multistage hybrid a-star algorithm and numerical optimal control. IEEE Access, 9, 102801–102810.CrossRef
Zurück zum Zitat Sun, C., Li, Q., Li, B., & Li, L. (2022). A successive linearization in feasible set algorithm for vehicle motion planning in unstructured and low-speed scenarios. IEEE Transactions on Intelligent Transportation Systems, 23(4), 3724–3736.MATHCrossRef Sun, C., Li, Q., Li, B., & Li, L. (2022). A successive linearization in feasible set algorithm for vehicle motion planning in unstructured and low-speed scenarios. IEEE Transactions on Intelligent Transportation Systems, 23(4), 3724–3736.MATHCrossRef
Zurück zum Zitat Tu, K., Yang, S., Zhang, H. and Wang, Z. (2019). Hybrid a based motion planning for autonomous vehicles in unstructured environment. In: 2019 IEEE international symposium on circuits and systems (ISCAS). Tu, K., Yang, S., Zhang, H. and Wang, Z. (2019). Hybrid a based motion planning for autonomous vehicles in unstructured environment. In: 2019 IEEE international symposium on circuits and systems (ISCAS).
Zurück zum Zitat Wang, C., Xia, M., & Meng, M. Q. H. (2020). Stable autonomous robotic wheelchair navigation in the environment with slope way. IEEE Transactions on Vehicular Technology, 69(10), 10759–10771.MATHCrossRef Wang, C., Xia, M., & Meng, M. Q. H. (2020). Stable autonomous robotic wheelchair navigation in the environment with slope way. IEEE Transactions on Vehicular Technology, 69(10), 10759–10771.MATHCrossRef
Zurück zum Zitat Zhang, X., Liniger, A., Sakai, A., Borrelli, F., & Ieee,. (2018). Autonomous parking using optimization-based collision avoidance. Miami Beach.CrossRef Zhang, X., Liniger, A., Sakai, A., Borrelli, F., & Ieee,. (2018). Autonomous parking using optimization-based collision avoidance. Miami Beach.CrossRef
Zurück zum Zitat Zhao, Y., Yan, L., Chen, Y., Dai, J., & Liu, Y. (2021). Robust and efficient trajectory replanning based on guiding path for quadrotor fast autonomous flight. Remote Sensing, 13, 5.MATH Zhao, Y., Yan, L., Chen, Y., Dai, J., & Liu, Y. (2021). Robust and efficient trajectory replanning based on guiding path for quadrotor fast autonomous flight. Remote Sensing, 13, 5.MATH
Zurück zum Zitat Zhou, J., He, R., Wang, Y., Jiang, S., Zhu, Z., Hu, J., Miao, J., & Luo, Q. (2021). Autonomous driving trajectory optimization with dual-loop iterative anchoring path smoothing and piecewise-jerk speed optimization. IEEE Robotics and Automation Letters, 6(2), 439–446.MATHCrossRef Zhou, J., He, R., Wang, Y., Jiang, S., Zhu, Z., Hu, J., Miao, J., & Luo, Q. (2021). Autonomous driving trajectory optimization with dual-loop iterative anchoring path smoothing and piecewise-jerk speed optimization. IEEE Robotics and Automation Letters, 6(2), 439–446.MATHCrossRef
Metadaten
Titel
An Efficient Optimization-Based Framework for Trajectory Planning with Enhanced Hybrid A* and A Modified Travel Corridor Generation Strategy
verfasst von
Yu Xiong
Zhenhong Yao
Publikationsdatum
26.02.2025
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-025-00228-6