Skip to main content
Erschienen in: Journal of Materials Science 23/2017

11.08.2017 | Chemical routes to materials

An efficient Sb-SnO2-supported IrO2 electrocatalyst for the oxygen evolution reaction in acidic medium

verfasst von: Jinlin Tong, Yuan Liu, Qi Peng, Wei Hu, Qiong Wu

Erschienen in: Journal of Materials Science | Ausgabe 23/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polymer (acidic) electrolyte membrane water electrolysis suffers from insufficient catalyst activity, high cost of noble metal, and unsatisfactory durability, due to the sluggish reaction kinetics of oxygen evolution reaction and poor stability of catalysts under harsh operating environments. Aiming to enhance the utilization and durability of noble metals, a mesoporous Sb-doped SnO2 material with high surface area and conductivity was synthesized via soft-template method to support IrO2 catalyst. Physical characterization reveals that the as-prepared composite exhibits a rough morphology with the weak crystallinity IrO2 upper layer covering the rutile SnO2 crystalline phase. Electrochemical test for the IrO2-loading-dependant activity finds that both the area-free activity and mass-specific current on the 31 wt% sample are the optimal, meaning the excellent dispersion effect coming from the mesoporous Sb-SnO2 support and the synergy between the catalytic particles and Sb dopant. In addition, the enhancement in mass transfer efficiency and conductivity coming from the porous, IrO2-covered cross-linked morphology and the support-active component interaction, the supported IrO2 with 50 wt% loading marks the maximum normalized charge (227 C g−1 IrO2) and the highest apparent current at 1.75 V. What is more, this composite catalyst with the noble metal oxide coating is much more durable during continuous oxygen evolution procedure under a constant potential of 1.6 V because of the anchor effect from the carrier on the catalyst and a protective effect from the noble metal layer on the non-acid-tolerant support.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li X, Hao X, Abudula A, Guan G (2016) Nanostructured catalysts for electrochemical water splitting: current state and prospects. J Mater Chem A 4:11973–12000CrossRef Li X, Hao X, Abudula A, Guan G (2016) Nanostructured catalysts for electrochemical water splitting: current state and prospects. J Mater Chem A 4:11973–12000CrossRef
2.
Zurück zum Zitat Kadakia KS, Jampani PH, Velikokhatnyi OI, Datta MK, Park SK, Hong DH (2014) Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis. J Power Sources 269:855–865CrossRef Kadakia KS, Jampani PH, Velikokhatnyi OI, Datta MK, Park SK, Hong DH (2014) Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis. J Power Sources 269:855–865CrossRef
3.
Zurück zum Zitat Audichon T, Guenot B, Baranton S, Cretin M, Lamy C, Coutanceau C (2017) Preparation and characterization of supported RuxIr(1−x)O2 nano-oxides using a modified polyol synthesis assisted by microwave activation for energy storage applications. Appl Catal B Environ 200:493–502CrossRef Audichon T, Guenot B, Baranton S, Cretin M, Lamy C, Coutanceau C (2017) Preparation and characterization of supported RuxIr(1−x)O2 nano-oxides using a modified polyol synthesis assisted by microwave activation for energy storage applications. Appl Catal B Environ 200:493–502CrossRef
4.
Zurück zum Zitat Nong HN, Oh H, Reier T, Willinger E, Willinger M, Petkov V, Teschner D, Strasser P (2015) Oxide-supported IrNiOx core–shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew Chem Int Ed 54:2975–2979CrossRef Nong HN, Oh H, Reier T, Willinger E, Willinger M, Petkov V, Teschner D, Strasser P (2015) Oxide-supported IrNiOx core–shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew Chem Int Ed 54:2975–2979CrossRef
5.
Zurück zum Zitat Hu W, Wang Y, Hu X, Zhou Y, Chen S (2012) Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium. J Mater Chem 22:6010–6016CrossRef Hu W, Wang Y, Hu X, Zhou Y, Chen S (2012) Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium. J Mater Chem 22:6010–6016CrossRef
6.
Zurück zum Zitat Trasatti S (1991) Physical electrochemistry of ceramic oxides. Electrochim Acta 36:225–241CrossRef Trasatti S (1991) Physical electrochemistry of ceramic oxides. Electrochim Acta 36:225–241CrossRef
7.
Zurück zum Zitat Gonzalez-Huerta RG, Ramos-Sanchez G, Balbuena PB (2014) Oxygen evolution in Co-doped RuO2 and IrO2: experimental and theoretical insights to diminish electrolysis overpotential. J Power Sources 268:69–76CrossRef Gonzalez-Huerta RG, Ramos-Sanchez G, Balbuena PB (2014) Oxygen evolution in Co-doped RuO2 and IrO2: experimental and theoretical insights to diminish electrolysis overpotential. J Power Sources 268:69–76CrossRef
8.
Zurück zum Zitat Audichon T, Morisset S, Napporn T, Kokoh KB, Comminges C, Morais C (2015) Effect of adding CeO2 to RuO2–IrO2 mixed nanocatalysts: activity towards the oxygen evolution reaction and stability in acidic media. ChemElectroChem 2:1128–1137CrossRef Audichon T, Morisset S, Napporn T, Kokoh KB, Comminges C, Morais C (2015) Effect of adding CeO2 to RuO2–IrO2 mixed nanocatalysts: activity towards the oxygen evolution reaction and stability in acidic media. ChemElectroChem 2:1128–1137CrossRef
9.
Zurück zum Zitat Fabbri E, Habereder A, Waltar K, Kötz R, Schmidt TJ (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 4:3800–3821CrossRef Fabbri E, Habereder A, Waltar K, Kötz R, Schmidt TJ (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 4:3800–3821CrossRef
10.
Zurück zum Zitat Gaudet J, Tavares AC, Trasatti S, Guay D (2005) Physicochemical characterization of mixed RuO2–SnO2 solid solutions. Chem Mater 17:1570–1579CrossRef Gaudet J, Tavares AC, Trasatti S, Guay D (2005) Physicochemical characterization of mixed RuO2–SnO2 solid solutions. Chem Mater 17:1570–1579CrossRef
11.
Zurück zum Zitat Sun W, Song Y, Gong X, Cao L, Yang J (2016) Hollandite structure Kx≈0.25IrO2 catalyst with highly efficient oxygen evolution reaction. ACS Appl Mater Interfaces 8:820–826CrossRef Sun W, Song Y, Gong X, Cao L, Yang J (2016) Hollandite structure Kx≈0.25IrO2 catalyst with highly efficient oxygen evolution reaction. ACS Appl Mater Interfaces 8:820–826CrossRef
12.
Zurück zum Zitat Sardar K, Ball SC, Sharman JD, Thompsett D, Fisher JM, Smith RA, Biswas PK, Lees MR, Kashtiban RJ, Sloan J (2012) Bismuth iridium oxide oxygen evolution catalyst from hydrothermal synthesis. Chem Mater 24:4192–4200CrossRef Sardar K, Ball SC, Sharman JD, Thompsett D, Fisher JM, Smith RA, Biswas PK, Lees MR, Kashtiban RJ, Sloan J (2012) Bismuth iridium oxide oxygen evolution catalyst from hydrothermal synthesis. Chem Mater 24:4192–4200CrossRef
13.
Zurück zum Zitat Li G, Yu H, Song W, Dou M, Li Y, Shao Z, Yi B (2012) A hard-template method for the preparation of IrO2, and its performance in a solid-polymer-electrolyte water electrolyzer. Chemsuschem 5:858–861CrossRef Li G, Yu H, Song W, Dou M, Li Y, Shao Z, Yi B (2012) A hard-template method for the preparation of IrO2, and its performance in a solid-polymer-electrolyte water electrolyzer. Chemsuschem 5:858–861CrossRef
14.
Zurück zum Zitat Nong HN, Gan L, Willinger E, Teschner D, Strasser P (2014) IrOx core-shell nanocatalysts for cost- and energy efficient electrochemical water splitting. Chem Sci 5:2955–2963CrossRef Nong HN, Gan L, Willinger E, Teschner D, Strasser P (2014) IrOx core-shell nanocatalysts for cost- and energy efficient electrochemical water splitting. Chem Sci 5:2955–2963CrossRef
15.
Zurück zum Zitat Hu W, Zhong H, Liang W, Chen S (2014) Ir-surface enriched porous Ir-Co oxide hierarchical architecture for high performance water oxidation in acidic media. ACS Appl Mater Interfaces 6:12729–12736CrossRef Hu W, Zhong H, Liang W, Chen S (2014) Ir-surface enriched porous Ir-Co oxide hierarchical architecture for high performance water oxidation in acidic media. ACS Appl Mater Interfaces 6:12729–12736CrossRef
16.
Zurück zum Zitat Saito A, Tsuji H, Shimoyama I, Shimizu K, Nishina Y (2015) Highly durable carbon-supported Pt catalysts prepared by hydrosilane-assisted nanoparticle deposition and surface functionalization. Chem Commun 51:5883–5886CrossRef Saito A, Tsuji H, Shimoyama I, Shimizu K, Nishina Y (2015) Highly durable carbon-supported Pt catalysts prepared by hydrosilane-assisted nanoparticle deposition and surface functionalization. Chem Commun 51:5883–5886CrossRef
17.
Zurück zum Zitat Nan L, Yue W, Jiang Y (2015) Fabrication of graphene-porous carbon–Pt nanocomposites with high electrocatalytic activity and durability for methanol oxidation. J Mater Chem A 3:22170–22175CrossRef Nan L, Yue W, Jiang Y (2015) Fabrication of graphene-porous carbon–Pt nanocomposites with high electrocatalytic activity and durability for methanol oxidation. J Mater Chem A 3:22170–22175CrossRef
18.
Zurück zum Zitat Wang XD, Liu GY, Xu JY, Jiang JM, Huang M, Li QF (2014) Microstructure control and performance of electrocatalysis composite materials foe oxygen evolution reaction (OER) on proton exchange membrane water electrolysis. Sci China Chem 44:1241–1254 Wang XD, Liu GY, Xu JY, Jiang JM, Huang M, Li QF (2014) Microstructure control and performance of electrocatalysis composite materials foe oxygen evolution reaction (OER) on proton exchange membrane water electrolysis. Sci China Chem 44:1241–1254
19.
Zurück zum Zitat Wang L, Lettenmeier P, Golla-Schindler U, Gazdzicki P, Cañas NA, Morawietz T, Hiesgen R, Hosseiny SS, Gago AS, Friedrich KA (2016) Nanostructured Ir-supported on Ti4O7 as a cost-effective anode for proton exchange membrane (PEM) electrolyzers. Phys Chem Chem Phys 18:4487–4495CrossRef Wang L, Lettenmeier P, Golla-Schindler U, Gazdzicki P, Cañas NA, Morawietz T, Hiesgen R, Hosseiny SS, Gago AS, Friedrich KA (2016) Nanostructured Ir-supported on Ti4O7 as a cost-effective anode for proton exchange membrane (PEM) electrolyzers. Phys Chem Chem Phys 18:4487–4495CrossRef
20.
Zurück zum Zitat Hao C, Lv H, Mi C, Song Y, Ma J (2016) Investigation of mesoporous niobium-doped TiO2 as an oxygen evolution catalyst support in an SPE water electrolyzer. ACS Sustain Chem Eng 4:746–756CrossRef Hao C, Lv H, Mi C, Song Y, Ma J (2016) Investigation of mesoporous niobium-doped TiO2 as an oxygen evolution catalyst support in an SPE water electrolyzer. ACS Sustain Chem Eng 4:746–756CrossRef
21.
Zurück zum Zitat Oh HS, Nong HN, Strasser P (2015) Preparation of mesoporous Sb-, F-, and in-doped SnO2 bulk powder with high surface area for use as catalyst supports in electrolytic cells. Adv Funct Mater 25:1074–1081CrossRef Oh HS, Nong HN, Strasser P (2015) Preparation of mesoporous Sb-, F-, and in-doped SnO2 bulk powder with high surface area for use as catalyst supports in electrolytic cells. Adv Funct Mater 25:1074–1081CrossRef
22.
Zurück zum Zitat Hu W, Chen S, Xia Q (2014) IrO2/Nb–TiO2 electrocatalyst for oxygen evolution reaction in acidic medium. Int Hydrogen Energy 39:6967–6976CrossRef Hu W, Chen S, Xia Q (2014) IrO2/Nb–TiO2 electrocatalyst for oxygen evolution reaction in acidic medium. Int Hydrogen Energy 39:6967–6976CrossRef
23.
Zurück zum Zitat Kim HW, Kim HS, Na HG, Yang JC, Kebede MA, Lee C (2011) Growth of Sb2O3 submicron rods by the thermal evaporation of a mixture of Zn and Sb powders. Ceram Int 37:593–598CrossRef Kim HW, Kim HS, Na HG, Yang JC, Kebede MA, Lee C (2011) Growth of Sb2O3 submicron rods by the thermal evaporation of a mixture of Zn and Sb powders. Ceram Int 37:593–598CrossRef
24.
Zurück zum Zitat Krishnakumar T, Jayaprakash R, Pinna N, Phani AR, Passacantando M, Santucci S (2009) Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. J Phys Chem Solids 70:993–999CrossRef Krishnakumar T, Jayaprakash R, Pinna N, Phani AR, Passacantando M, Santucci S (2009) Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. J Phys Chem Solids 70:993–999CrossRef
25.
Zurück zum Zitat Rockenberger J, Felde UZ, Tisher M, Troger L, Hasse M, Weller H (2000) Near edge X-ray absorption fine structure measurements (XANES) and extended x-ray absorption fine structure measurements (EXAFS) of the valence st ate and coordination of antimony in doped nanocrystalline SnO2. J Chem Phys 112:4296–4308CrossRef Rockenberger J, Felde UZ, Tisher M, Troger L, Hasse M, Weller H (2000) Near edge X-ray absorption fine structure measurements (XANES) and extended x-ray absorption fine structure measurements (EXAFS) of the valence st ate and coordination of antimony in doped nanocrystalline SnO2. J Chem Phys 112:4296–4308CrossRef
26.
Zurück zum Zitat Babar AB, Shinde SS, Moholkar AV, Bhosale CH, Kim JH, Rajpure KY (2010) Structural and optoelectronic properties of antimony incorporated tin oxide thin films. J Alloy Comp 505:416–422CrossRef Babar AB, Shinde SS, Moholkar AV, Bhosale CH, Kim JH, Rajpure KY (2010) Structural and optoelectronic properties of antimony incorporated tin oxide thin films. J Alloy Comp 505:416–422CrossRef
27.
Zurück zum Zitat Nguyen TD, Scherer GG, Xu ZJ (2016) A facile synthesis of size-controllable IrO2 and RuO2 nanoparticles for the oxygen evolution reaction. Electrocatalysis 7:420–427CrossRef Nguyen TD, Scherer GG, Xu ZJ (2016) A facile synthesis of size-controllable IrO2 and RuO2 nanoparticles for the oxygen evolution reaction. Electrocatalysis 7:420–427CrossRef
28.
Zurück zum Zitat Noonuruk R, Vittayakorn N, Mekprasart W, Sritharathikhun J, Pecharapa W (2015) Sb-doped SnO2 nanoparticles synthesized by sonochemical-assisted precipitation process. J Nanosci Nanotechnol 15:2564–2569CrossRef Noonuruk R, Vittayakorn N, Mekprasart W, Sritharathikhun J, Pecharapa W (2015) Sb-doped SnO2 nanoparticles synthesized by sonochemical-assisted precipitation process. J Nanosci Nanotechnol 15:2564–2569CrossRef
29.
Zurück zum Zitat Shanthi S, Subramanian C, Ramasamy P (1999) Growth and characterization of antimony doped tin oxide thin film. J Cryst Growth 197:858–864CrossRef Shanthi S, Subramanian C, Ramasamy P (1999) Growth and characterization of antimony doped tin oxide thin film. J Cryst Growth 197:858–864CrossRef
30.
Zurück zum Zitat Gregg SJ, Sing KSW, Salzberg HW (1967) Adsorption surface area and porosity. J Electrochem Soc 114:279CCrossRef Gregg SJ, Sing KSW, Salzberg HW (1967) Adsorption surface area and porosity. J Electrochem Soc 114:279CCrossRef
31.
Zurück zum Zitat Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732CrossRef Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732CrossRef
32.
Zurück zum Zitat Chang SS, Clair B, Ruelle J, Beauchêne J, Renzo FD, Quignard F, Zhao GJ, Yamamoto H, Gril J (2009) Mesoporosity as a new parameter for understanding tension stress generation in trees. J Exp Bot 60:3023–3030CrossRef Chang SS, Clair B, Ruelle J, Beauchêne J, Renzo FD, Quignard F, Zhao GJ, Yamamoto H, Gril J (2009) Mesoporosity as a new parameter for understanding tension stress generation in trees. J Exp Bot 60:3023–3030CrossRef
33.
Zurück zum Zitat Eager CD, Riggs WM, Davis LE et al (1978) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Waltham Eager CD, Riggs WM, Davis LE et al (1978) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Waltham
34.
Zurück zum Zitat Augustynski J, Koudelka M, Sanchez J (1984) ESCA study of the state of iridium and oxygen in electrochemically and thermally formed iridium oxide films. J Electroanal Chem 160:233–248CrossRef Augustynski J, Koudelka M, Sanchez J (1984) ESCA study of the state of iridium and oxygen in electrochemically and thermally formed iridium oxide films. J Electroanal Chem 160:233–248CrossRef
35.
Zurück zum Zitat Chen RS, Huang YS, Liang YM, Tsai DS, Chi Y, Kai JJ (2003) Growth control and characterization of vertically aligned IrO2 nanorods. J Mater Chem 13:2525–2529CrossRef Chen RS, Huang YS, Liang YM, Tsai DS, Chi Y, Kai JJ (2003) Growth control and characterization of vertically aligned IrO2 nanorods. J Mater Chem 13:2525–2529CrossRef
36.
Zurück zum Zitat Atanasoska L, Atanasoska R, Trasatti S (1990) XPS and AES study of mixed layers of RuO2 and IrO2. Vacuum 40:91–94CrossRef Atanasoska L, Atanasoska R, Trasatti S (1990) XPS and AES study of mixed layers of RuO2 and IrO2. Vacuum 40:91–94CrossRef
37.
Zurück zum Zitat Lee WH, Kim H (2011) Oxidized iridium nanodendrites as catalysts for oxygen evolution reactions. Catal Commun 12:408–411CrossRef Lee WH, Kim H (2011) Oxidized iridium nanodendrites as catalysts for oxygen evolution reactions. Catal Commun 12:408–411CrossRef
38.
Zurück zum Zitat Xu J, Aili D, Li Q, Christensen E, Jensen JO, Zhang W, Hansen MK, Liu G, Wang X, Bjerrum NJ (2014) Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis. Energy Environ Sci 7:820–830CrossRef Xu J, Aili D, Li Q, Christensen E, Jensen JO, Zhang W, Hansen MK, Liu G, Wang X, Bjerrum NJ (2014) Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis. Energy Environ Sci 7:820–830CrossRef
39.
Zurück zum Zitat Ouattara L, Fierro S, Frey O, Koudelka M, Comninellis C (2009) Electrochemical comparison of IrO2 prepared by anodic oxidation of pure iridium and IrO2 prepared by thermal decomposition of H2IrCl6 precursor solution. J Appl Electrochem 39(8):1361–1367CrossRef Ouattara L, Fierro S, Frey O, Koudelka M, Comninellis C (2009) Electrochemical comparison of IrO2 prepared by anodic oxidation of pure iridium and IrO2 prepared by thermal decomposition of H2IrCl6 precursor solution. J Appl Electrochem 39(8):1361–1367CrossRef
40.
Zurück zum Zitat Oh HS, Nong HN, Reier T, Gliech M, Strasser P (2015) Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem Sci 6:3321–3328CrossRef Oh HS, Nong HN, Reier T, Gliech M, Strasser P (2015) Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem Sci 6:3321–3328CrossRef
41.
Zurück zum Zitat Kong FD, Liu J, Ling AX, Xu ZQ, Wang HY, Kong QS (2015) Preparation of IrO2 nanoparticles with SBA-15 template and its supported Pt nanocomposite as bifunctional oxygen catalyst. J Power Sources 299:170–175CrossRef Kong FD, Liu J, Ling AX, Xu ZQ, Wang HY, Kong QS (2015) Preparation of IrO2 nanoparticles with SBA-15 template and its supported Pt nanocomposite as bifunctional oxygen catalyst. J Power Sources 299:170–175CrossRef
42.
Zurück zum Zitat Marshall AT, Haverkamp RG (2010) Electrocatalytic activity of IrO2–RuO2 supported on Sb-doped SnO2 nanoparticles. Electrochim Acta 55:1978–1984CrossRef Marshall AT, Haverkamp RG (2010) Electrocatalytic activity of IrO2–RuO2 supported on Sb-doped SnO2 nanoparticles. Electrochim Acta 55:1978–1984CrossRef
43.
Zurück zum Zitat Oh HS, Nong HN, Reier T, Bergmann A, Gliech M, Araújo JF, Willinger E, Schlögl R, Teschner D, Strasser P (2016) Electrochemical catalyst–support effects and their stabilizing role for IrOx nanoparticle catalysts during the oxygen evolution reaction. J Am Chem Soc 138:12552–12563CrossRef Oh HS, Nong HN, Reier T, Bergmann A, Gliech M, Araújo JF, Willinger E, Schlögl R, Teschner D, Strasser P (2016) Electrochemical catalyst–support effects and their stabilizing role for IrOx nanoparticle catalysts during the oxygen evolution reaction. J Am Chem Soc 138:12552–12563CrossRef
44.
Zurück zum Zitat Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2:1765–1772CrossRef Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2:1765–1772CrossRef
45.
Zurück zum Zitat Da Silva LA, Alves VA, Da Silva MAP, Trasatti S, Boodts JFC (1997) Oxygen evolution in acid solution on IrO2 + TiO2 ceramic films. A study by impedance, voltammetry and SEM. Electrochim Acta 42:271–281CrossRef Da Silva LA, Alves VA, Da Silva MAP, Trasatti S, Boodts JFC (1997) Oxygen evolution in acid solution on IrO2 + TiO2 ceramic films. A study by impedance, voltammetry and SEM. Electrochim Acta 42:271–281CrossRef
46.
Zurück zum Zitat Papaderakis A, Pliatsikas N, Prochaska Ch, Vourlias G, Patsalas P, Tsiplakides D, Balomenou S, Sotiropoulos S (2016) Oxygen evolution at IrO2 Shell–Ir–Ni core electrodes prepared by galvanic replacement. J Phys Chem C 120:19995–20005CrossRef Papaderakis A, Pliatsikas N, Prochaska Ch, Vourlias G, Patsalas P, Tsiplakides D, Balomenou S, Sotiropoulos S (2016) Oxygen evolution at IrO2 Shell–Ir–Ni core electrodes prepared by galvanic replacement. J Phys Chem C 120:19995–20005CrossRef
47.
Zurück zum Zitat Kadakia K, Datta MK, Velikokhatnyi OI, Jampani P, Park SK, Chung SJ, Kumta PN (2014) High performance fluorine doped (Sn, Ru)O2 oxygen evolution reaction electro-catalysts for proton exchange membrane based water electrolysis. J Power Sources 245:362–370CrossRef Kadakia K, Datta MK, Velikokhatnyi OI, Jampani P, Park SK, Chung SJ, Kumta PN (2014) High performance fluorine doped (Sn, Ru)O2 oxygen evolution reaction electro-catalysts for proton exchange membrane based water electrolysis. J Power Sources 245:362–370CrossRef
Metadaten
Titel
An efficient Sb-SnO2-supported IrO2 electrocatalyst for the oxygen evolution reaction in acidic medium
verfasst von
Jinlin Tong
Yuan Liu
Qi Peng
Wei Hu
Qiong Wu
Publikationsdatum
11.08.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 23/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1447-1

Weitere Artikel der Ausgabe 23/2017

Journal of Materials Science 23/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.