Skip to main content
Erschienen in:

01.04.2025 | Original Paper

An efficient semi-automated characterization of rock mass discontinuities from 3D point clouds based on Nutcracker Optimization Algorithm-improved probabilistic neural network

verfasst von: Shuyang Han, Dawei Tong, Binping Wu, Jiajun Wang, Xiaoling Wang, Wanyu Zhang

Erschienen in: Bulletin of Engineering Geology and the Environment | Ausgabe 4/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Discontinuities in rock masses significantly influence their mechanical properties and are critical for engineering applications, making it essential to thoroughly understand their geometric parameters. 3D point clouds serve as fundamental data for efficiently and accurately analyzing discontinuity orientations. In this context, a novel semi-automated method that employs a Nutcracker Optimization Algorithm-improved Probabilistic Neural Network (NOA-PNN) is proposed. The NOA enables the PNN to quickly identify the optimal smoothing factor, balancing both accuracy and efficiency. This method utilizes not only normal vectors, but also point coordinates, curvature, and density, incorporating a broader set of features to accurately identify points on discontinuities. The NOA-PNN model, trained on manually selected samples, swiftly identifies discontinuity sets while efficiently filtering out noise. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is then used to extract single discontinuities within each set. Each discontinuity is fitted to a plane using a Principal Component Analysis (PCA)-based least squares method, facilitating the measurement of their spatial geometric parameters. Validation through two cases demonstrated that the proposed method achieved an average deviation of less than 5° in both dip direction and dip angle, exhibiting potential advantages in terms of accuracy and efficiency when compared to other important studies or software. This method significantly improves computational efficiency and achieves satisfactory results with only a small number of randomly selected samples. Its low requirements for sample quality and operator expertise make it highly operable and easily adaptable for practical engineering applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.
Metadaten
Titel
An efficient semi-automated characterization of rock mass discontinuities from 3D point clouds based on Nutcracker Optimization Algorithm-improved probabilistic neural network
verfasst von
Shuyang Han
Dawei Tong
Binping Wu
Jiajun Wang
Xiaoling Wang
Wanyu Zhang
Publikationsdatum
01.04.2025
Verlag
Springer Berlin Heidelberg
Erschienen in
Bulletin of Engineering Geology and the Environment / Ausgabe 4/2025
Print ISSN: 1435-9529
Elektronische ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-025-04227-w