Skip to main content
Erschienen in: Wireless Personal Communications 3/2019

19.08.2019

An Efficient Target Tracking in Directional Sensor Networks Using Adapted Unscented Kalman Filter

verfasst von: Zahra Izadi-Ghodousi, Mahsa Hosseinpour, Fatemeh Safaei, Amir Hossein Mohajerzadeh, Mohammad Alishahi

Erschienen in: Wireless Personal Communications | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we have considered an efficient adapted Unscented Kalman Filter based target tracking in directional wireless sensor networks while observations are noise-corrupted. In directional sensor networks, sensors are able to observe the target only in specified (and certainly changeable) directions. Also, sensor nodes are capable of measuring the bearings (relative angle to the target). To make target tracking efficient, first, we use scheduling algorithm which determines the sensor nodes activity. Also coverage is a challenge that we will discuss in this paper as well. Sensor nodes activation algorithm directly affects the target areas coverage. Second, we use time series to predict the motion of the target. Using ARIMA, in each step of target position estimation, an area will be predicted where the target would be there with high probability. Third, we use a version of UKF, which is adjusted to the requirements of the target tracking application, to determine the position of the target with desired precision. Fourth, a routing algorithm called as C-RPL is used to perform the communications between sensor nodes in each step. Simulation results approve that the proposed efficient target tracking algorithm achieves its goals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rawat, P., Singh, K. D., Chaouchi, H., & Bonnin, J. M. (2014). Wireless sensor networks: A survey on recent developments and potential synergies. The Journal of Supercomputing,68(1), 1–48.CrossRef Rawat, P., Singh, K. D., Chaouchi, H., & Bonnin, J. M. (2014). Wireless sensor networks: A survey on recent developments and potential synergies. The Journal of Supercomputing,68(1), 1–48.CrossRef
2.
Zurück zum Zitat Demigha, O., Hidouci, W.-K., & Ahmed, T. (2013). On energy efficiency in collaborative target tracking in wireless sensor network: A review. Communications Surveys & Tutorials, IEEE,15(3), 1210–1222.CrossRef Demigha, O., Hidouci, W.-K., & Ahmed, T. (2013). On energy efficiency in collaborative target tracking in wireless sensor network: A review. Communications Surveys & Tutorials, IEEE,15(3), 1210–1222.CrossRef
3.
Zurück zum Zitat Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer networks,52(12), 2292–2330.CrossRef Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer networks,52(12), 2292–2330.CrossRef
4.
Zurück zum Zitat Vasuhi, S., & Vaidehi, V. (2016). Target tracking using interactive multiple model for wireless sensor network. Information Fusion,27, 41–53.CrossRef Vasuhi, S., & Vaidehi, V. (2016). Target tracking using interactive multiple model for wireless sensor network. Information Fusion,27, 41–53.CrossRef
5.
Zurück zum Zitat Lersteau, C., Rossi, A., & Sevaux, M. (2016). Robust scheduling of wireless sensor networks for target tracking under uncertainty. European Journal of Operational Research,252(2), 407–417.MathSciNetMATHCrossRef Lersteau, C., Rossi, A., & Sevaux, M. (2016). Robust scheduling of wireless sensor networks for target tracking under uncertainty. European Journal of Operational Research,252(2), 407–417.MathSciNetMATHCrossRef
6.
Zurück zum Zitat Mohamadi, H., Ismail, A. S., & Salleh, S. (2013). Utilizing distributed learning automata to solve the connected target coverage problem in directional sensor networks. Sensors and Actuators, A: Physical,198, 21–30.CrossRef Mohamadi, H., Ismail, A. S., & Salleh, S. (2013). Utilizing distributed learning automata to solve the connected target coverage problem in directional sensor networks. Sensors and Actuators, A: Physical,198, 21–30.CrossRef
7.
Zurück zum Zitat Guvensan, M. A., & Yavuz, A. G. (2011). On coverage issues in directional sensor networks: A survey. Ad Hoc Networks,9(7), 1238–1255.CrossRef Guvensan, M. A., & Yavuz, A. G. (2011). On coverage issues in directional sensor networks: A survey. Ad Hoc Networks,9(7), 1238–1255.CrossRef
8.
Zurück zum Zitat Zhu, C., Zheng, C., Shu, L., & Han, G. (2012). A survey on coverage and connectivity issues in wireless sensor networks. Journal of Network and Computer Applications,35(2), 619–632.CrossRef Zhu, C., Zheng, C., Shu, L., & Han, G. (2012). A survey on coverage and connectivity issues in wireless sensor networks. Journal of Network and Computer Applications,35(2), 619–632.CrossRef
9.
Zurück zum Zitat Zhao, L., Bai, G., Jiang, Y., Shen, H., & Tang, Z. (2014). Optimal deployment and scheduling with directional sensors for energy-efficient barrier coverage. International Journal of Distributed Sensor Networks,10(1), 1–9.CrossRef Zhao, L., Bai, G., Jiang, Y., Shen, H., & Tang, Z. (2014). Optimal deployment and scheduling with directional sensors for energy-efficient barrier coverage. International Journal of Distributed Sensor Networks,10(1), 1–9.CrossRef
10.
Zurück zum Zitat Rossi, A., Singh, A., & Sevaux, M. (2013). Lifetime maximization in wireless directional sensor network. European Journal of Operational Research,231(1), 229–241.CrossRef Rossi, A., Singh, A., & Sevaux, M. (2013). Lifetime maximization in wireless directional sensor network. European Journal of Operational Research,231(1), 229–241.CrossRef
11.
Zurück zum Zitat Mohamadi, H., Salleh, S., & Razali, M. N. (2014). Heuristic methods to maximize network lifetime in directional sensor networks with adjustable sensing ranges. Journal of Network and Computer Applications,46, 26–35.CrossRef Mohamadi, H., Salleh, S., & Razali, M. N. (2014). Heuristic methods to maximize network lifetime in directional sensor networks with adjustable sensing ranges. Journal of Network and Computer Applications,46, 26–35.CrossRef
12.
Zurück zum Zitat Zhu, X., Li, J., Chen, X., & Zhou, M. (2017). Minimum cost deployment of heterogeneous directional sensor networks for differentiated target coverage. IEEE Sensors Journal,17(15), 4938–4952.CrossRef Zhu, X., Li, J., Chen, X., & Zhou, M. (2017). Minimum cost deployment of heterogeneous directional sensor networks for differentiated target coverage. IEEE Sensors Journal,17(15), 4938–4952.CrossRef
13.
Zurück zum Zitat Khedr, A. M., & Osamy, W. (2011). Effective target tracking mechanism in a self-organizing wireless sensor network. Journal of Parallel and Distributed Computing,71(10), 1318–1326.CrossRef Khedr, A. M., & Osamy, W. (2011). Effective target tracking mechanism in a self-organizing wireless sensor network. Journal of Parallel and Distributed Computing,71(10), 1318–1326.CrossRef
14.
Zurück zum Zitat Shen, X., & Varshney, P. K. (2014). Sensor selection based on generalized information gain for target tracking in large sensor networks. IEEE Transactions on Signal Processing,62(2), 363–375.MathSciNetMATHCrossRef Shen, X., & Varshney, P. K. (2014). Sensor selection based on generalized information gain for target tracking in large sensor networks. IEEE Transactions on Signal Processing,62(2), 363–375.MathSciNetMATHCrossRef
15.
Zurück zum Zitat Sahoo, P. K., Sheu, J.-P., & Hsieh, K.-Y. (2013). Target tracking and boundary node selection algorithms of wireless sensor networks for internet services. Information Sciences,230, 21–38.MathSciNetCrossRef Sahoo, P. K., Sheu, J.-P., & Hsieh, K.-Y. (2013). Target tracking and boundary node selection algorithms of wireless sensor networks for internet services. Information Sciences,230, 21–38.MathSciNetCrossRef
16.
Zurück zum Zitat Jin, Y., Ding, Y., Hao, K., & Jin, Y. (2015). An endocrine-based intelligent distributed cooperative algorithm for target tracking in wireless sensor networks. Soft Computing,19(5), 1427–1441.CrossRef Jin, Y., Ding, Y., Hao, K., & Jin, Y. (2015). An endocrine-based intelligent distributed cooperative algorithm for target tracking in wireless sensor networks. Soft Computing,19(5), 1427–1441.CrossRef
17.
Zurück zum Zitat Pino-Povedano, S., & González-Serrano, F.-J. (2014). Comparison of optimization algorithms in the sensor selection for predictive target tracking. Ad Hoc Networks,20, 182–192.CrossRef Pino-Povedano, S., & González-Serrano, F.-J. (2014). Comparison of optimization algorithms in the sensor selection for predictive target tracking. Ad Hoc Networks,20, 182–192.CrossRef
18.
Zurück zum Zitat Teng, J., Snoussi, H., Richard, C., & Zhou, R. (2012). Distributed variational filtering for simultaneous sensor localization and target tracking in wireless sensor networks. IEEE Transactions on Vehicular Technology,61(5), 2305–2318.CrossRef Teng, J., Snoussi, H., Richard, C., & Zhou, R. (2012). Distributed variational filtering for simultaneous sensor localization and target tracking in wireless sensor networks. IEEE Transactions on Vehicular Technology,61(5), 2305–2318.CrossRef
19.
Zurück zum Zitat Luo, C., Li, W., Fan, M., Yang, H., & Fan, Q. (2014). A collaborative positioning algorithm for mobile target using multisensor data integration in enclosed environments. Computer Communications,44, 26–35.CrossRef Luo, C., Li, W., Fan, M., Yang, H., & Fan, Q. (2014). A collaborative positioning algorithm for mobile target using multisensor data integration in enclosed environments. Computer Communications,44, 26–35.CrossRef
20.
Zurück zum Zitat Misra, S., Singh, S., Khatua, M., & Obaidat, M. S. (2015). Extracting mobility pattern from target trajectory in wireless sensor networks. International Journal of Communication Systems,28(2), 213–230.CrossRef Misra, S., Singh, S., Khatua, M., & Obaidat, M. S. (2015). Extracting mobility pattern from target trajectory in wireless sensor networks. International Journal of Communication Systems,28(2), 213–230.CrossRef
21.
Zurück zum Zitat Yu, Z.-J., Wei, J.-M., & Liu, H.-T. (2009). Energy-efficient collaborative target tracking algorithm using cost-reference particle filtering in wireless acoustic sensor networks. The Journal of China Universities of Posts and Telecommunications,16(1), 9–43.CrossRef Yu, Z.-J., Wei, J.-M., & Liu, H.-T. (2009). Energy-efficient collaborative target tracking algorithm using cost-reference particle filtering in wireless acoustic sensor networks. The Journal of China Universities of Posts and Telecommunications,16(1), 9–43.CrossRef
22.
Zurück zum Zitat Pino-Povedano, S., Arroyo-Valles, R., & Cid-Sueiro, J. (2014). Selective forwarding for energy-efficient target tracking in sensor networks. Signal Processing,94, 557–569.CrossRef Pino-Povedano, S., Arroyo-Valles, R., & Cid-Sueiro, J. (2014). Selective forwarding for energy-efficient target tracking in sensor networks. Signal Processing,94, 557–569.CrossRef
23.
Zurück zum Zitat Yang, W., Chen, G., Wang, X., & Shi, L. (2014). Stochastic sensor activation for distributed state estimation over a sensor network. Automatica,50(8), 2070–2076.MathSciNetMATHCrossRef Yang, W., Chen, G., Wang, X., & Shi, L. (2014). Stochastic sensor activation for distributed state estimation over a sensor network. Automatica,50(8), 2070–2076.MathSciNetMATHCrossRef
24.
Zurück zum Zitat Shang, C., Chen, G., Ji, C., & Chang, C.-Y. (2015). An efficient target tracking mechanism for guaranteeing user-defined tracking quality in WSNs. IEEE Sensors Journal,15(9), 5258–5271.CrossRef Shang, C., Chen, G., Ji, C., & Chang, C.-Y. (2015). An efficient target tracking mechanism for guaranteeing user-defined tracking quality in WSNs. IEEE Sensors Journal,15(9), 5258–5271.CrossRef
25.
Zurück zum Zitat Feng, J., Lian, B., & Zhao, H. (2015). Coordinated and adaptive information collecting in target tracking wireless sensor networks. IEEE Sensors Journal,15(6), 3436–3445.CrossRef Feng, J., Lian, B., & Zhao, H. (2015). Coordinated and adaptive information collecting in target tracking wireless sensor networks. IEEE Sensors Journal,15(6), 3436–3445.CrossRef
26.
Zurück zum Zitat Bhuiyan, M., Wang, G., & Vasilakos, A. (2014). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers,64(7), 1968–1982.MathSciNetMATHCrossRef Bhuiyan, M., Wang, G., & Vasilakos, A. (2014). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers,64(7), 1968–1982.MathSciNetMATHCrossRef
27.
Zurück zum Zitat Wang, X., Wang, T., Chen, S., Fan, R., Xu, Y., Wang, W., et al. (2016). Track fusion based on threshold factor classification algorithm in wireless sensor networks. International Journal of Communication Systems,30(7), e3164.CrossRef Wang, X., Wang, T., Chen, S., Fan, R., Xu, Y., Wang, W., et al. (2016). Track fusion based on threshold factor classification algorithm in wireless sensor networks. International Journal of Communication Systems,30(7), e3164.CrossRef
28.
Zurück zum Zitat Nayebi-Astaneh, A., Pariz, N., & Naghibi-Sistani, M.-B. (2015). Adaptive node scheduling under accuracy constraint forwireless sensor nodes with multiple bearings-only sensing units. IEEE Transactions on Aerospace and Electronic Systems,51(2), 1547–1557.CrossRef Nayebi-Astaneh, A., Pariz, N., & Naghibi-Sistani, M.-B. (2015). Adaptive node scheduling under accuracy constraint forwireless sensor nodes with multiple bearings-only sensing units. IEEE Transactions on Aerospace and Electronic Systems,51(2), 1547–1557.CrossRef
29.
Zurück zum Zitat Zheng, J., Bhuiyan, M. Z. A., Liang, S., Xing, X., & Wang, G. (2014). Auction-based adaptive sensor activation algorithm for target tracking in wireless sensor networks. Future Generation Computer Systems,39, 88–99.CrossRef Zheng, J., Bhuiyan, M. Z. A., Liang, S., Xing, X., & Wang, G. (2014). Auction-based adaptive sensor activation algorithm for target tracking in wireless sensor networks. Future Generation Computer Systems,39, 88–99.CrossRef
30.
Zurück zum Zitat Liang, Y., Feng, X., Yang, F., Jiao, L., & Pan, Q. (2013). The distributed infectious disease model and its application to collaborative sensor wakeup of wireless sensor networks. Information Sciences,223, 192–204.MathSciNetCrossRef Liang, Y., Feng, X., Yang, F., Jiao, L., & Pan, Q. (2013). The distributed infectious disease model and its application to collaborative sensor wakeup of wireless sensor networks. Information Sciences,223, 192–204.MathSciNetCrossRef
31.
Zurück zum Zitat Lin, J., Xiao, W., Lewis, F. L., & Xie, L. (2009). Energy-efficient distributed adaptive multisensor scheduling for target tracking in wireless sensor networks. IEEE Transactions on Instrumentation and Measurement,58(6), 1886–1896.CrossRef Lin, J., Xiao, W., Lewis, F. L., & Xie, L. (2009). Energy-efficient distributed adaptive multisensor scheduling for target tracking in wireless sensor networks. IEEE Transactions on Instrumentation and Measurement,58(6), 1886–1896.CrossRef
32.
Zurück zum Zitat Mohajerzadeh, A. H., Yaghmaee, M. H., & Zahmatkesh, A. (2015). Efficient data collecting and target parameter estimation in wireless sensor networks. Journal of Network and Computer Applications,57, 142–155.CrossRef Mohajerzadeh, A. H., Yaghmaee, M. H., & Zahmatkesh, A. (2015). Efficient data collecting and target parameter estimation in wireless sensor networks. Journal of Network and Computer Applications,57, 142–155.CrossRef
33.
Zurück zum Zitat Hu, X., Hu, Y. H., & Xu, B. (2014). Energy-balanced scheduling for target tracking in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN),11(1), 21.CrossRef Hu, X., Hu, Y. H., & Xu, B. (2014). Energy-balanced scheduling for target tracking in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN),11(1), 21.CrossRef
34.
Zurück zum Zitat Jiang, B., Ravindran, B., & Cho, H. (2013). Probability-based prediction and sleep scheduling for energy-efficient target tracking in sensor networks. IEEE Transactions on Mobile Computing,12(4), 735–747.CrossRef Jiang, B., Ravindran, B., & Cho, H. (2013). Probability-based prediction and sleep scheduling for energy-efficient target tracking in sensor networks. IEEE Transactions on Mobile Computing,12(4), 735–747.CrossRef
35.
Zurück zum Zitat Shi, K., Chen, H., & Lin, Y. (2015). Probabilistic coverage based sensor scheduling for target tracking sensor networks. Information Sciences,292, 95–110.CrossRef Shi, K., Chen, H., & Lin, Y. (2015). Probabilistic coverage based sensor scheduling for target tracking sensor networks. Information Sciences,292, 95–110.CrossRef
36.
Zurück zum Zitat Cryer, J. D., & Kellet, N. (1986). Time series analysis (Vol. 286). Berlin: Springer. Cryer, J. D., & Kellet, N. (1986). Time series analysis (Vol. 286). Berlin: Springer.
37.
Zurück zum Zitat Djotio, T. N., & Nouho, J. S. N. (2012). Problem of standardization of configuration data in wireless sensor networks: The case of routing protocols. Wireless Sensor Network,4(7), 177.CrossRef Djotio, T. N., & Nouho, J. S. N. (2012). Problem of standardization of configuration data in wireless sensor networks: The case of routing protocols. Wireless Sensor Network,4(7), 177.CrossRef
38.
Zurück zum Zitat Winter, T., et al. (2012). RPL: IPv6 routing protocol for low-power and lossy networks. RFC6550. Winter, T., et al. (2012). RPL: IPv6 routing protocol for low-power and lossy networks. RFC6550.
39.
Zurück zum Zitat Vasseur, J. (2011). Terminology in low power and lossy networks. (Work in progress). Vasseur, J. (2011). Terminology in low power and lossy networks. (Work in progress).
40.
Zurück zum Zitat Gaddour, O., & Koubâa, A. (2012). RPL in a nutshell: A survey. Computer Networks,56(14), 3163–3178.CrossRef Gaddour, O., & Koubâa, A. (2012). RPL in a nutshell: A survey. Computer Networks,56(14), 3163–3178.CrossRef
41.
Zurück zum Zitat Agusti-Torra, A., Cervello-Pastor, C., & Fiol, M. A. (2013). ID routing mechanism for opportunistic multi-hop networks. Communications Letters, IEEE,17(12), 2388–2391.CrossRef Agusti-Torra, A., Cervello-Pastor, C., & Fiol, M. A. (2013). ID routing mechanism for opportunistic multi-hop networks. Communications Letters, IEEE,17(12), 2388–2391.CrossRef
42.
Zurück zum Zitat Thubert, P. (2012). Objective function zero for the routing protocol for low-power and lossy networks (RPL). Thubert, P. (2012). Objective function zero for the routing protocol for low-power and lossy networks (RPL).
43.
Zurück zum Zitat Gnawali, O., & Levis, P. (2010). The ETX objective function for RPL. Gnawali, O., & Levis, P. (2010). The ETX objective function for RPL.
44.
Zurück zum Zitat Brachman, A. (2013). RPL objective function impact on LLNS topology and performance. In Internet of things, smart spaces, and next generation networking (pp. 340–351). Springer. Brachman, A. (2013). RPL objective function impact on LLNS topology and performance. In Internet of things, smart spaces, and next generation networking (pp. 340–351). Springer.
45.
Zurück zum Zitat Karkazis, P., Leligou, H. C., Sarakis, L., Zahariadis, T., Trakadas, P., Velivassaki, T. H., et al. (2012). Design of primary and composite routing metrics for RPL-compliant wireless sensor networks. In 2012 international conference on telecommunications and multimedia (TEMU) (pp. 13–18). IEEE. Karkazis, P., Leligou, H. C., Sarakis, L., Zahariadis, T., Trakadas, P., Velivassaki, T. H., et al. (2012). Design of primary and composite routing metrics for RPL-compliant wireless sensor networks. In 2012 international conference on telecommunications and multimedia (TEMU) (pp. 13–18). IEEE.
46.
Zurück zum Zitat Long, N. T., Uwase, M.-P., Tiberghien, J., & Steenhaut, K. (2013). QoS-aware cross-layer mechanism for multiple instances RPL. In 2013 international conference on advanced technologies for communications (ATC) (pp. 44–49). IEEE. Long, N. T., Uwase, M.-P., Tiberghien, J., & Steenhaut, K. (2013). QoS-aware cross-layer mechanism for multiple instances RPL. In 2013 international conference on advanced technologies for communications (ATC) (pp. 44–49). IEEE.
Metadaten
Titel
An Efficient Target Tracking in Directional Sensor Networks Using Adapted Unscented Kalman Filter
verfasst von
Zahra Izadi-Ghodousi
Mahsa Hosseinpour
Fatemeh Safaei
Amir Hossein Mohajerzadeh
Mohammad Alishahi
Publikationsdatum
19.08.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2019
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06660-z

Weitere Artikel der Ausgabe 3/2019

Wireless Personal Communications 3/2019 Zur Ausgabe

Neuer Inhalt