Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

21.07.2018 | S.I. : Machine Learning Applications for Self-Organized Wireless Networks | Sonderheft 1/2019

Neural Computing and Applications 1/2019

An efficient top-k ranking method for service selection based on ε-ADMOPSO algorithm

Zeitschrift:
Neural Computing and Applications > Sonderheft 1/2019
Autoren:
Wei Yu, Shijun Li, Xiaoyue Tang, Kai Wang

Abstract

One of the main concerns in rank aggregation tasks for metasearch service is how to retrieve and aggregate the large-scale candidate search results efficiently. Much work has been done to implement metasearch service engines with different rank aggregation algorithms. However, the performance of these metasearch engines can hardly be improved. In this paper, we transform the top-k ranking task into a multi-objective programming problem when user preferences are considered along with user queries. We build an improved discrete multi-objective programming model to make the aggregate rankings satisfy user queries and user preferences both, and then propose a user preferences-based rank aggregation algorithm accordingly. Based on discrete particle swarm optimization algorithm, we improve the encoding scheme, the initialization methods, the position and velocity definition, the integrating updating process, the turbulence operator, and the external archive updating and leader selection strategy to make sure the candidate results that fit the user’s preferences can be located quickly and accurately in a large-scale discrete solution space. We have our proposed algorithm tested on three different benchmark datasets: a public dataset, the real-world datasets and the synthetic simulation datasets. The experimental results demonstrate the efficacy and convergence efficiency of the proposed algorithm over the baseline rank aggregation methods especially when dealing with large amount of candidate results. And when the set of candidate results is of normal size, the proposed algorithm is proved to perform not worse than the baseline methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Sonderheft 1/2019

Neural Computing and Applications 1/2019 Zur Ausgabe

S.I. : Machine Learning Applications for Self-Organized Wireless Networks

Novel local restart strategies with hyper-populated ant colonies for dynamic optimization problems

Machine Learning Applications for Self-Organized Wireless Networks

Type II assembly line balancing problem with multi-operators

Premium Partner

    Bildnachweise