Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 12/2019

25.10.2019 | Original Article

An efficient wavelet and curvelet-based PET image denoising technique

verfasst von: Abhishek Bal, Minakshi Banerjee, Punit Sharma, Mausumi Maitra

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Positron emission tomography (PET) image denoising is a challenging task due to the presence of noise and low spatial resolution compared with other imaging techniques such as magnetic resonance imaging (MRI) and computed tomography (CT). PET image noise can hamper further processing and analysis, such as segmentation and disease screening. The wavelet transform–based techniques have often been proposed for PET image denoising to handle isotropic (smooth details) features. The curvelet transform–based PET image denoising techniques have the ability to handle multi-scale and multi-directional properties such as edges and curves (anisotropic features) as compared with wavelet transform–based denoising techniques. The wavelet denoising method is not optimal for anisotropic features, whereas the curvelet denoising method sometimes has difficulty in handling isotropic features. In order to handle the weaknesses of individual wavelet and curvelet-based methods, the present research proposes an efficient PET image denoising technique based on the combination of wavelet and curvelet transforms, along with a new adaptive threshold selection to threshold the wavelet coefficients in each subband (except last level low pass (LL) residual). The proposed threshold utilizes the advantages of adaptive threshold taken from BayesShrink along with the neighborhood window concept. The present method was tested on both simulated phantom and clinical PET datasets. Experimental results show that our method has achieved better results than the existing methods such as VisuShrink, BayesShrink, NeighShrink, ModineighShrink, curvelet, and an existing wavelet curvelet-based method with respect to different noise measurement metrics, such as mean squared error (MSE), signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), and image quality index (IQI). Furthermore, notable performance is achieved in the case of medical applications such as gray matter segmentation and precise tumor region identification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Pieterman RM, van Putten JWG, Meuzelaar JJ, Mooyaart EL, Vaalburg W, Koëter GH, Fidler V, Pruim J, Groen HJM (2000) Preoperative staging of non–small-cell lung cancer with positron-emission tomography. England J Med 343(4):254–261CrossRef Pieterman RM, van Putten JWG, Meuzelaar JJ, Mooyaart EL, Vaalburg W, Koëter GH, Fidler V, Pruim J, Groen HJM (2000) Preoperative staging of non–small-cell lung cancer with positron-emission tomography. England J Med 343(4):254–261CrossRef
2.
Zurück zum Zitat Iwata R, Ido T (1990) Differential diagnosis of lung tumor with positron emission tomography: a prospective Iwata R, Ido T (1990) Differential diagnosis of lung tumor with positron emission tomography: a prospective
3.
Zurück zum Zitat Weber W, Carter Y, Abdel-Dayem HM, Sfakianakis G, et al. (1999) Assessment of pulmonary lesions with (18) f-fluorodeoxyglucose positron imaging using coincidence mode gamma cameras. J Nucl Med 40(4):574PubMed Weber W, Carter Y, Abdel-Dayem HM, Sfakianakis G, et al. (1999) Assessment of pulmonary lesions with (18) f-fluorodeoxyglucose positron imaging using coincidence mode gamma cameras. J Nucl Med 40(4):574PubMed
4.
Zurück zum Zitat Coxson PG, Huesman RH, Borland L (1997) Consequences of using a simplified kinetic model for dynamic pet data. J Nucl Med 38(4):660PubMed Coxson PG, Huesman RH, Borland L (1997) Consequences of using a simplified kinetic model for dynamic pet data. J Nucl Med 38(4):660PubMed
5.
Zurück zum Zitat Rodrigues I, Sanches J, Bioucas-Dias J (2008) Denoising of medical images corrupted by poisson noise. In: 15th IEEE International conference on image processing, 2008. ICIP 2008. IEEE, pp 1756–1759 Rodrigues I, Sanches J, Bioucas-Dias J (2008) Denoising of medical images corrupted by poisson noise. In: 15th IEEE International conference on image processing, 2008. ICIP 2008. IEEE, pp 1756–1759
6.
Zurück zum Zitat Shih Y-Y, Chen J-C, Liu R-S (2005) Development of wavelet de-noising technique for pet images. Comput Med Imaging Graph 29(4):297–304PubMedCrossRef Shih Y-Y, Chen J-C, Liu R-S (2005) Development of wavelet de-noising technique for pet images. Comput Med Imaging Graph 29(4):297–304PubMedCrossRef
7.
Zurück zum Zitat Le Pogam A, Hanzouli H, Hatt M, Cheze Le Rest C, Visvikis D (2013) Denoising of pet images by combining wavelets and curvelets for improved preservation of resolution and quantitation. Med Image Anal 17 (8):877–891PubMedCrossRef Le Pogam A, Hanzouli H, Hatt M, Cheze Le Rest C, Visvikis D (2013) Denoising of pet images by combining wavelets and curvelets for improved preservation of resolution and quantitation. Med Image Anal 17 (8):877–891PubMedCrossRef
8.
Zurück zum Zitat Turkheimer FE, Banati RB, Visvikis D, Aston JAD, Gunn RN, Cunningham VJ (2000) Modeling dynamic pet-spect studies in the wavelet domain. J Cerebral Blood Flow Metabol 20(5):879–893CrossRef Turkheimer FE, Banati RB, Visvikis D, Aston JAD, Gunn RN, Cunningham VJ (2000) Modeling dynamic pet-spect studies in the wavelet domain. J Cerebral Blood Flow Metabol 20(5):879–893CrossRef
9.
Zurück zum Zitat Hannequin P, Mas J (2002) Statistical and heuristic image noise extraction (shine): a new method for processing poisson noise in scintigraphic images. Phys Med Biol 47(24):4329PubMedCrossRef Hannequin P, Mas J (2002) Statistical and heuristic image noise extraction (shine): a new method for processing poisson noise in scintigraphic images. Phys Med Biol 47(24):4329PubMedCrossRef
10.
Zurück zum Zitat Seret A, Vanhove C, Defrise M (2009) Resolution improvement and noise reduction in human pinhole spect using a multi-ray approach and the shine method. Nuklearmedizin Nucl Med 48(4):159–165CrossRef Seret A, Vanhove C, Defrise M (2009) Resolution improvement and noise reduction in human pinhole spect using a multi-ray approach and the shine method. Nuklearmedizin Nucl Med 48(4):159–165CrossRef
11.
Zurück zum Zitat Ollinger JM, Fessler JA (1997) Positron-emission tomography. IEEE Signal Process Mag 14(1):43–55CrossRef Ollinger JM, Fessler JA (1997) Positron-emission tomography. IEEE Signal Process Mag 14(1):43–55CrossRef
12.
Zurück zum Zitat Ito K, Xiong K (2000) Gaussian filters for nonlinear filtering problems. IEEE Trans Autom control 45 (5):910–927CrossRef Ito K, Xiong K (2000) Gaussian filters for nonlinear filtering problems. IEEE Trans Autom control 45 (5):910–927CrossRef
13.
Zurück zum Zitat Alpert NM, Reilhac A, Chio TC, Selesnick I (2006) Optimization of dynamic measurement of receptor kinetics by wavelet denoising. Neuroimage 30(2):444–451PubMedCrossRef Alpert NM, Reilhac A, Chio TC, Selesnick I (2006) Optimization of dynamic measurement of receptor kinetics by wavelet denoising. Neuroimage 30(2):444–451PubMedCrossRef
14.
Zurück zum Zitat Candes E, Demanet L, Donoho D, Ying L (2006) Fast discrete curvelet transforms. Multiscale Model Simul 5(3):861–899CrossRef Candes E, Demanet L, Donoho D, Ying L (2006) Fast discrete curvelet transforms. Multiscale Model Simul 5(3):861–899CrossRef
15.
Zurück zum Zitat Candès EJ, Donoho DL (2004) New tight frames of curvelets and optimal representations of objects with piecewise c2 singularities. Commun Pure Appl Math 57(2):219–266CrossRef Candès EJ, Donoho DL (2004) New tight frames of curvelets and optimal representations of objects with piecewise c2 singularities. Commun Pure Appl Math 57(2):219–266CrossRef
16.
Zurück zum Zitat Ridgelets EJC (1998) Ridgelets: theory and applications. PhD thesis, Ph. D. Thesis, Stanford University USA Ridgelets EJC (1998) Ridgelets: theory and applications. PhD thesis, Ph. D. Thesis, Stanford University USA
17.
Zurück zum Zitat Starck J-L, Candès EJ, Donoho DL (2002) The curvelet transform for image denoising. IEEE Trans Image Process 11(6):670–684PubMedCrossRef Starck J-L, Candès EJ, Donoho DL (2002) The curvelet transform for image denoising. IEEE Trans Image Process 11(6):670–684PubMedCrossRef
18.
Zurück zum Zitat Binh NT, Khare A (2010) Multilevel threshold based image denoising in curvelet domain. J Comput Sci Technol 25(3):632–640CrossRef Binh NT, Khare A (2010) Multilevel threshold based image denoising in curvelet domain. J Comput Sci Technol 25(3):632–640CrossRef
19.
Zurück zum Zitat Donoho DL, Johnstone IM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika, 425–455 Donoho DL, Johnstone IM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika, 425–455
20.
Zurück zum Zitat Chang SG, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9(9):1532–1546PubMedCrossRef Chang SG, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9(9):1532–1546PubMedCrossRef
21.
Zurück zum Zitat Shidahara M, Ikoma Y, Kershaw J, Kimura Y, Naganawa M, Watabe H (2007) Pet kinetic analysis: wavelet denoising of dynamic pet data with application to parametric imaging. Ann Nucl Med 21(7):379PubMedCrossRef Shidahara M, Ikoma Y, Kershaw J, Kimura Y, Naganawa M, Watabe H (2007) Pet kinetic analysis: wavelet denoising of dynamic pet data with application to parametric imaging. Ann Nucl Med 21(7):379PubMedCrossRef
22.
Zurück zum Zitat Cai TT, Silverman BW (2001) Incorporating information on neighbouring coefficients into wavelet estimation. Sankhyā Indian J Statist, Series B, 127–148 Cai TT, Silverman BW (2001) Incorporating information on neighbouring coefficients into wavelet estimation. Sankhyā Indian J Statist, Series B, 127–148
23.
Zurück zum Zitat Chen GY, Tien D, Bui, Krzyżak A (2005) Image denoising with neighbour dependency and customized wavelet and threshold. Pattern Recogn 38(1):115–124CrossRef Chen GY, Tien D, Bui, Krzyżak A (2005) Image denoising with neighbour dependency and customized wavelet and threshold. Pattern Recogn 38(1):115–124CrossRef
24.
Zurück zum Zitat Mohideen KS, Perumal AS, Sathik MM (2008) Image de-noising using discrete wavelet transform. Int J Comput Sci Netw Secur 8(1):213–216 Mohideen KS, Perumal AS, Sathik MM (2008) Image de-noising using discrete wavelet transform. Int J Comput Sci Netw Secur 8(1):213–216
25.
Zurück zum Zitat Om H, Biswas M (2012) An improved image denoising method based on wavelet thresholdingCrossRef Om H, Biswas M (2012) An improved image denoising method based on wavelet thresholdingCrossRef
26.
Zurück zum Zitat Green GC (2005) Wavelet-based denoising of cardiac PET data. Carleton University Green GC (2005) Wavelet-based denoising of cardiac PET data. Carleton University
27.
Zurück zum Zitat Taswell C (2000) The what, how, and why of wavelet shrinkage denoising. Comput Sci Eng 2(3):12–19CrossRef Taswell C (2000) The what, how, and why of wavelet shrinkage denoising. Comput Sci Eng 2(3):12–19CrossRef
28.
Zurück zum Zitat Mohl B, Wahlberg M, Madsen PT (2003) Ideal spatial adaptation via wavelet shrinkage. J Acoust Soc Am 114:1143–1154PubMedCrossRef Mohl B, Wahlberg M, Madsen PT (2003) Ideal spatial adaptation via wavelet shrinkage. J Acoust Soc Am 114:1143–1154PubMedCrossRef
29.
Zurück zum Zitat Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627CrossRef Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627CrossRef
30.
Zurück zum Zitat Donoho DL, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc 90(432):1200–1224CrossRef Donoho DL, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc 90(432):1200–1224CrossRef
31.
Zurück zum Zitat Chang GS, Yu B, Vetterli M (1998) Spatially adaptive wavelet thresholding with context modeling for image denoising. In: 1998 International conference on image processing, 1998. ICIP 98. Proceedings, vol 1. IEEE, pp 535–539 Chang GS, Yu B, Vetterli M (1998) Spatially adaptive wavelet thresholding with context modeling for image denoising. In: 1998 International conference on image processing, 1998. ICIP 98. Proceedings, vol 1. IEEE, pp 535–539
32.
Zurück zum Zitat AlZubi S, Islam N, Abbod M (2011) Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation. J Biomed Imag 2011:4 AlZubi S, Islam N, Abbod M (2011) Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation. J Biomed Imag 2011:4
33.
Zurück zum Zitat Kumar YK (2009) Comparison of fusion techniques applied to preclinical images: fast discrete curvelet transform using wrapping technique & wavelet transform. J Theor Appl Inf Technol, 5(6) Kumar YK (2009) Comparison of fusion techniques applied to preclinical images: fast discrete curvelet transform using wrapping technique & wavelet transform. J Theor Appl Inf Technol, 5(6)
34.
Zurück zum Zitat Ali Hyder S, Sukanesh R (2011) An efficient algorithm for denoising mr and ct images using digital curvelet transform. In: Software tools and algorithms for biological systems. Springer, pp 471–480 Ali Hyder S, Sukanesh R (2011) An efficient algorithm for denoising mr and ct images using digital curvelet transform. In: Software tools and algorithms for biological systems. Springer, pp 471–480
35.
Zurück zum Zitat Starck J-L, Murtagh F, Fadili JM (2010) Sparse image and signal processing: wavelets, curvelets, morphological diversity. Cambridge University Press Starck J-L, Murtagh F, Fadili JM (2010) Sparse image and signal processing: wavelets, curvelets, morphological diversity. Cambridge University Press
36.
Zurück zum Zitat Mallat S (2008) A wavelet tour of signal processing: the sparse way. Academic Press Mallat S (2008) A wavelet tour of signal processing: the sparse way. Academic Press
37.
Zurück zum Zitat Wang Z, Bovik AC (2002) A universal image quality index. IEEE Signal Process Lett 9(3):81–84CrossRef Wang Z, Bovik AC (2002) A universal image quality index. IEEE Signal Process Lett 9(3):81–84CrossRef
38.
Zurück zum Zitat Slifstein M, Mawlawi O, Laruelle M (2001) Partial volume effect correction: methodological considerations. In: Gjedde A, Hansen SB, GMK, Paulson OB (eds) Physiological imaging of the brain with PET, pp 65–71 Slifstein M, Mawlawi O, Laruelle M (2001) Partial volume effect correction: methodological considerations. In: Gjedde A, Hansen SB, GMK, Paulson OB (eds) Physiological imaging of the brain with PET, pp 65–71
39.
Zurück zum Zitat Bal A, Banerjee M, Chakrabarti A, Sharma P (2018) Mri brain tumor segmentation and analysis using rough-fuzzy c-means and shape based properties. Journal of King Saud University-Computer and Information Sciences Bal A, Banerjee M, Chakrabarti A, Sharma P (2018) Mri brain tumor segmentation and analysis using rough-fuzzy c-means and shape based properties. Journal of King Saud University-Computer and Information Sciences
40.
Zurück zum Zitat Bal A, Banerjee M, Sharma P, Maitra M (2018) Brain tumor segmentation on mr image using k-means and fuzzy-possibilistic clustering. In: 2018 2nd International conference on electronics, materials engineering & nano-technology (IEMENTech). IEEE, pp 1–8 Bal A, Banerjee M, Sharma P, Maitra M (2018) Brain tumor segmentation on mr image using k-means and fuzzy-possibilistic clustering. In: 2018 2nd International conference on electronics, materials engineering & nano-technology (IEMENTech). IEEE, pp 1–8
41.
Zurück zum Zitat Maji P, Pal SK (2011) Rough-fuzzy pattern recognition: applications in bioinformatics and medical imaging, vol 3. Wiley Maji P, Pal SK (2011) Rough-fuzzy pattern recognition: applications in bioinformatics and medical imaging, vol 3. Wiley
42.
Zurück zum Zitat Kekre HB, Gharge S (2010) Texture based segmentation using statistical properties for mammographic images. Entropy 1:2 Kekre HB, Gharge S (2010) Texture based segmentation using statistical properties for mammographic images. Entropy 1:2
43.
Zurück zum Zitat Yang H-Y, Wang X-Y, Wang Q-Y, Zhang X-J (2012) Ls-svm based image segmentation using color and texture information. J Vis Commun Image Represent 23(7):1095–1112CrossRef Yang H-Y, Wang X-Y, Wang Q-Y, Zhang X-J (2012) Ls-svm based image segmentation using color and texture information. J Vis Commun Image Represent 23(7):1095–1112CrossRef
44.
Zurück zum Zitat Yu S, Muhammed HH (2016) Noise type evaluation in positron emission tomography images. In: International conference on biomedical engineering (IBIOMED). IEEE, pp 1–6 Yu S, Muhammed HH (2016) Noise type evaluation in positron emission tomography images. In: International conference on biomedical engineering (IBIOMED). IEEE, pp 1–6
45.
Zurück zum Zitat Hasinoff SW (2014) Photon, poisson noise. In: Computer vision. Springer, pp 608–610 Hasinoff SW (2014) Photon, poisson noise. In: Computer vision. Springer, pp 608–610
46.
Zurück zum Zitat Consul PC, Jain GC (1973) A generalization of the poisson distribution. Technometrics 15(4):791–799CrossRef Consul PC, Jain GC (1973) A generalization of the poisson distribution. Technometrics 15(4):791–799CrossRef
47.
Zurück zum Zitat Stollnitz EJ, DeRose TD, Salesin DH (1995) Wavelets for computer graphics: a primer part 1 y. Way 6 (2):1 Stollnitz EJ, DeRose TD, Salesin DH (1995) Wavelets for computer graphics: a primer part 1 y. Way 6 (2):1
48.
Zurück zum Zitat Mulcahy C (1997) Image compression using the haar wavelet transform. Spelman Sci Math J 1(1):22–31 Mulcahy C (1997) Image compression using the haar wavelet transform. Spelman Sci Math J 1(1):22–31
49.
Zurück zum Zitat Kara B, Watsuji N (2003) Using wavelets for texture classification. In: IJCI proceedings of international conference on signal processing, vol 1 Kara B, Watsuji N (2003) Using wavelets for texture classification. In: IJCI proceedings of international conference on signal processing, vol 1
50.
Zurück zum Zitat Candes EJ, Donoho DL (2000) Curvelets, multiresolution representation, and scaling laws. In: International symposium on optical science and technology. International Society for Optics and Photonics, pp 1–12 Candes EJ, Donoho DL (2000) Curvelets, multiresolution representation, and scaling laws. In: International symposium on optical science and technology. International Society for Optics and Photonics, pp 1–12
51.
Zurück zum Zitat Donoho DL (2000) Orthonormal ridgelets and linear singularities. SIAM J Math Anal 31(5):1062–1099CrossRef Donoho DL (2000) Orthonormal ridgelets and linear singularities. SIAM J Math Anal 31(5):1062–1099CrossRef
52.
Zurück zum Zitat Do MN, Vetterli M (2003) The finite ridgelet transform for image representation. IEEE Trans Image Process 12(1):16–28PubMedCrossRef Do MN, Vetterli M (2003) The finite ridgelet transform for image representation. IEEE Trans Image Process 12(1):16–28PubMedCrossRef
53.
Zurück zum Zitat Candès EJ, Donoho DL (1999) Ridgelets: a key to higher-dimensional intermittency? Philos Trans R Soc London A: Math Phys Eng Sci 357(1760):2495–2509CrossRef Candès EJ, Donoho DL (1999) Ridgelets: a key to higher-dimensional intermittency? Philos Trans R Soc London A: Math Phys Eng Sci 357(1760):2495–2509CrossRef
Metadaten
Titel
An efficient wavelet and curvelet-based PET image denoising technique
verfasst von
Abhishek Bal
Minakshi Banerjee
Punit Sharma
Mausumi Maitra
Publikationsdatum
25.10.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 12/2019
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-019-02014-w

Weitere Artikel der Ausgabe 12/2019

Medical & Biological Engineering & Computing 12/2019 Zur Ausgabe