Skip to main content

14.08.2024

An Empirical Study of Nature-Inspired Algorithms for Feature Selection in Medical Applications

verfasst von: Varun Arora, Parul Agarwal

Erschienen in: Annals of Data Science

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nature-inspired algorithms (NIA) are proven to be the potential tool for solving intricate optimization problems and aid in the development of better computational techniques. In recent years, these algorithms have raised considerable interest to optimize feature selection problems. In literature, NIA is found to select relevant features among available features in the diagnosis of many chronic diseases. In this paper, a comprehensive review of existing nature-inspired feature selection techniques is presented. Along with this, the fundamental definitions of feature selection and the usage of NIA to optimize feature selection are shown. We have given a review showcasing the NIA application for selecting feature subsets from the available features in the domain of medical applications. The paper reviews and analyzes numerous relevant papers from 2008 to 2022 on feature selection through NIA on biomedical applications. Moreover, to find the best optimization algorithm for feature selection, we have conducted experiments among four well-known nature-inspired algorithms on ten benchmark datasets of the biomedical domain for classification. We have reported results on various state-of-the-art evaluation measures and presented the convergence graphs for analysis. Based on the average rank of fitness values, Particle Swarm Optimization is found to be better than Harris Hawk Optimization, Grey Wolf Optimization, and Whale Optimization. In this paper, we have also presented some open challenges of this research area to guide researchers as well as experts of computational intelligence for future work. The paper will help future researchers understand the use and implementation of nature-inspired algorithms for feature selection in the medical domain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Zamani H, Nadimi-Shahraki M-H (2016) Feature selection based on whale optimization algorithm for diseases diagnosis. Int J Comput Sci Inf Secur 14:1243–1247 Zamani H, Nadimi-Shahraki M-H (2016) Feature selection based on whale optimization algorithm for diseases diagnosis. Int J Comput Sci Inf Secur 14:1243–1247
8.
Zurück zum Zitat Shi DLO (2006) Introduction to business data mining Shi DLO (2006) Introduction to business data mining
10.
Zurück zum Zitat Yong S, Yingjie T, Gang K, Yi PJL (2011) Optimization based data mining: theory and applications Yong S, Yingjie T, Gang K, Yi PJL (2011) Optimization based data mining: theory and applications
11.
Zurück zum Zitat Yong S (2022) Advances in big data analytics Yong S (2022) Advances in big data analytics
17.
Zurück zum Zitat Thakkar A, Lohiya R (2021) A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions. Springer, Netherlands Thakkar A, Lohiya R (2021) A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions. Springer, Netherlands
18.
Zurück zum Zitat Remeseiro B, Bolon-Canedo V (2019) A review of feature selection methods in medical applications. Comput Biol Med. 112 Remeseiro B, Bolon-Canedo V (2019) A review of feature selection methods in medical applications. Comput Biol Med. 112
22.
Zurück zum Zitat Fister I, Yang XS, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. Elektroteh Vestnik/Electrotechnical Rev 80:116–122 Fister I, Yang XS, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. Elektroteh Vestnik/Electrotechnical Rev 80:116–122
24.
Zurück zum Zitat Holland J.H. (1984) Genetic Algorithms and Adaptation. In: Selfridge O.G., Rissland E.L., Arbib M.A. (eds) Adaptive Control of Ill-Defined Systems. NATO Conf Ser (II Syst Sci 16:317–333 Holland J.H. (1984) Genetic Algorithms and Adaptation. In: Selfridge O.G., Rissland E.L., Arbib M.A. (eds) Adaptive Control of Ill-Defined Systems. NATO Conf Ser (II Syst Sci 16:317–333
39.
104.
Zurück zum Zitat Yang X-SS, Karamanoglu M (2013) Nature-Inspired Metaheuristic Algorithms Second Edition Yang X-SS, Karamanoglu M (2013) Nature-Inspired Metaheuristic Algorithms Second Edition
Metadaten
Titel
An Empirical Study of Nature-Inspired Algorithms for Feature Selection in Medical Applications
verfasst von
Varun Arora
Parul Agarwal
Publikationsdatum
14.08.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Data Science
Print ISSN: 2198-5804
Elektronische ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00571-y