Skip to main content

2016 | OriginalPaper | Buchkapitel

7. An Energy Function for Morse–Smale Diffeomorphisms on 3-Manifolds

verfasst von : Viacheslav Z. Grines, Timur V. Medvedev, Olga V. Pochinka

Erschienen in: Dynamical Systems on 2- and 3-Manifolds

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Following the ideas of A. Lyapunov C. Conley introduced the notion of a Lyapunov function for a dynamical system (see Definition 7.1). In 1978 he proved the existence of a continuous Lyapunov function for every dynamical system [2]. This result is called the fundamental theorem of dynamical systems. If a Lyapunov function is smooth and the set of its critical points coincides with the chain recurrent set then this function is called the energy function. Very generally smooth flows admit an energy function (see, e.g. Theorem 6.12 in [1]), but it is not true for diffeomorphisms. First results on construction of an energy function (see Definition 7.2) belong to S. Smale. In 1961 [9] he proved the existence of an energy function, which is a Morse function, for every gradient-like flow (i.e. Morse-Smale flow without closed trajectories). K. Meyer [7] in 1968 generalized this result and constructed an energy function, which is a Morse-Bott function, for an arbitrary Morse-Smale flow. The only result of this kind for diffeomorphisms belongs to D. Pixton [8], who in 1977 proved the existence of an energy function, which is a Morse function, for Morse-Smale diffeomorphisms on surfaces. Furthermore, he constructed a diffeomorphism on the 3-sphere (we have already mentioned it in Chapter 4 as the Pixton’s example) which has no energy function, and he explained the phenomenon to be caused by the wild embedding of the separatrices of the saddle points. Recently the conditions of existence of an energy function were found in [36]. In section 7.1 we present important properties of a Lyapunov function, which is a Morse function, for Morse-Smale diffeomorphisms on n-manifolds. In section 7.2 we introduce a dynamically ordered Morse-Lyapunov function for an arbitrary Morse-Smale diffeomorphism of a 3-manifold with the properties closely related to the dynamics of the diffeomorphism. We show that the necessary and sufficient conditions of the existence of an energy function with these properties are determined by the type of the embedding of the 1-dimensional attractors (repellers), each of which is the union of the 0-dimensional and the 1-dimensional unstable (stable) manifolds of the periodic points of the diffeomorphism.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
This function can be constructed, for example, making use of suspension. Let \(f\in MS(M^n)\) and let \(\hat{f}^t\) be the flow on the manifold \(M^n\times \mathbb R\) induced by the vector field which consists of the unit vectors parallel to \(\mathbb R\) and directed to \(+\infty \). Define the diffeomorphism \(g:M^n\times \mathbb R\rightarrow M^n\times \mathbb R\) by \(g(x,\tau )=(f(x),\tau -1)\). Let \(G=\{g^k~,k\in \mathbb Z\}\) and \(W=(M^n\times \mathbb R)/G\). Let \(p_{_{W}}:M^n\times \mathbb R\rightarrow W\) denote the natural projection and let \(f^t\) denote the flow on the manifold W defined by \(f^t(x)=p_{_{W}}(\hat{f}^t(p^{-1}_{_{W}}(x)))\). The flow \(f^t\) is called the suspension over the diffeomorphism f. By construction the chain-recurrent set of the flow \(f^t\) consists of \(k_f\) periodic orbits \(\delta _i=p_{_{W}}(\mathscr {O}_i\times \mathbb R)~,i\in \{1,\dots , k_f\}\). Therefore, the suspension \(f^t\) is a Morse–Smale flow without fixed points. Then applying the results of [7] one constructs an energy function for the flow \(f^t\) whose restriction to \(M^n\) is the desired Lyapunov function for f.
 
2
Notice that the conditions of Theorem 7.3 are not necessary. The paper [3] provides an example of a Morse–Smale diffeomorphism on the manifold \(\mathbb S^2\times \mathbb S^1\), which has a dynamically ordered energy function but the 1-dimensional attractor and the 1–dimensional repeller of it are not tightly embedded.
 
Literatur
1.
Zurück zum Zitat Akin, E.: The General Topology of Dynamical Systems, vol. 1. American Mathematical Society, Providence (2010)MATH Akin, E.: The General Topology of Dynamical Systems, vol. 1. American Mathematical Society, Providence (2010)MATH
2.
Zurück zum Zitat Conley, C.C.: Isolated Invariant Sets and the Morse Index, vol. 38. American Mathematical Society, Providence (1978)MATH Conley, C.C.: Isolated Invariant Sets and the Morse Index, vol. 38. American Mathematical Society, Providence (1978)MATH
3.
Zurück zum Zitat Grines, V., Laudenbach, F., Pochinka, O.: The energy function for gradient-like diffeomorphisms on 3-manifolds. Dokl. Math. 78(2), 702–704 (2008)MathSciNetCrossRefMATH Grines, V., Laudenbach, F., Pochinka, O.: The energy function for gradient-like diffeomorphisms on 3-manifolds. Dokl. Math. 78(2), 702–704 (2008)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Grines, V., Laudenbach, F., Pochinka, O.: On the existence of an energy function for Morse–Smale diffeomorphisms on 3-manifolds. Dokl. Math. 84(2), 601–603 (2011)MathSciNetCrossRefMATH Grines, V., Laudenbach, F., Pochinka, O.: On the existence of an energy function for Morse–Smale diffeomorphisms on 3-manifolds. Dokl. Math. 84(2), 601–603 (2011)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Grines, V., Laudenbach, F., Pochinka, O.: Dynamically ordered energy function for Morse–Smale diffeomorphisms on 3-manifolds. Proc. Steklov Inst. Math. 278, 34–48 (2012)MathSciNetCrossRefMATH Grines, V., Laudenbach, F., Pochinka, O.: Dynamically ordered energy function for Morse–Smale diffeomorphisms on 3-manifolds. Proc. Steklov Inst. Math. 278, 34–48 (2012)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Grines, V., Laudenbach, F., Pochinka, O., et al.: Self-indexing energy function for Morse–Smale diffeomorphisms on 3-manifolds. Mosc. Math. J. 9(4), 801–821 (2009)MathSciNetMATH Grines, V., Laudenbach, F., Pochinka, O., et al.: Self-indexing energy function for Morse–Smale diffeomorphisms on 3-manifolds. Mosc. Math. J. 9(4), 801–821 (2009)MathSciNetMATH
7.
Zurück zum Zitat Meyer, K.R.: Energy functions for Morse–Smale systems. Amer. J. Math. pp. 1031–1040 (1968) Meyer, K.R.: Energy functions for Morse–Smale systems. Amer. J. Math. pp. 1031–1040 (1968)
9.
Zurück zum Zitat Smale, S.: On gradient dynamical systems. Ann. of Math. pp. 199–206 (1961) Smale, S.: On gradient dynamical systems. Ann. of Math. pp. 199–206 (1961)
Metadaten
Titel
An Energy Function for Morse–Smale Diffeomorphisms on 3-Manifolds
verfasst von
Viacheslav Z. Grines
Timur V. Medvedev
Olga V. Pochinka
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-44847-3_7