Skip to main content
Erschienen in: Calcolo 4/2017

02.08.2017

An energy-preserving algorithm for nonlinear Hamiltonian wave equations with Neumann boundary conditions

verfasst von: Wei Shi, Kai Liu, Xinyuan Wu, Changying Liu

Erschienen in: Calcolo | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a novel energy-preserving numerical scheme for nonlinear Hamiltonian wave equations with Neumann boundary conditions is proposed and analyzed based on the blend of spatial discretization by finite element method (FEM) and time discretization by Average Vector Field (AVF) approach. We first use the finite element discretization in space, which leads to a system of Hamiltonian ODEs whose Hamiltonian can be thought of as the semi-discrete energy of the original continuous system. The stability of the semi-discrete finite element scheme is analyzed. We then apply the AVF approach to the Hamiltonian ODEs to yield a new and efficient fully discrete scheme, which can preserve exactly (machine precision) the semi-discrete energy. The blend of FEM and AVF approach derives a new and efficient numerical scheme for nonlinear Hamiltonian wave equations. The numerical results on a single-soliton problem and a sine-Gordon equation are presented to demonstrate the remarkable energy-preserving property of the proposed numerical scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Reich, S.: Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157, 473–499 (2000)MathSciNetCrossRefMATH Reich, S.: Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157, 473–499 (2000)MathSciNetCrossRefMATH
2.
3.
Zurück zum Zitat Wazwaz, A.M.: New travelling wave solutions to the Boussinesq and the Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 13, 889–901 (2008)MathSciNetCrossRefMATH Wazwaz, A.M.: New travelling wave solutions to the Boussinesq and the Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 13, 889–901 (2008)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Dodd, R.K., Eilbeck, I.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982)MATH Dodd, R.K., Eilbeck, I.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982)MATH
5.
Zurück zum Zitat Biswas, A.: Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3239–3249 (2009)MathSciNetCrossRefMATH Biswas, A.: Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3239–3249 (2009)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Shakeri, F., Dehghan, M.: Numerical solution of the Klein–Gordon equation via He’s variational iteration method. Nonlinear Dyn. 51, 89–97 (2008)MathSciNetCrossRefMATH Shakeri, F., Dehghan, M.: Numerical solution of the Klein–Gordon equation via He’s variational iteration method. Nonlinear Dyn. 51, 89–97 (2008)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simul. 71, 16–30 (2006)MathSciNetCrossRefMATH Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simul. 71, 16–30 (2006)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Dehghan, M., Mirezaei, D.: Numerical solution to the unsteady two-dimensional Schrodinger equation using meshless local boundary integral equation method. Int. J. Numer. Methods Eng. 76, 501–520 (2008)MathSciNetCrossRefMATH Dehghan, M., Mirezaei, D.: Numerical solution to the unsteady two-dimensional Schrodinger equation using meshless local boundary integral equation method. Int. J. Numer. Methods Eng. 76, 501–520 (2008)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Bratsos, A.G.: On the numerical solution of the Klein–Gordon equation. Numer. Methods Partial Differ. Equ. 25, 939–951 (2009)MathSciNetCrossRefMATH Bratsos, A.G.: On the numerical solution of the Klein–Gordon equation. Numer. Methods Partial Differ. Equ. 25, 939–951 (2009)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Budd, C.J., Piggot, M.D.: Geometric Integration and Its Applications, Handbook of Numerical Analysis, vol. XI. North-Holland, Amsterdam (2003) Budd, C.J., Piggot, M.D.: Geometric Integration and Its Applications, Handbook of Numerical Analysis, vol. XI. North-Holland, Amsterdam (2003)
11.
Zurück zum Zitat Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)MathSciNetCrossRefMATH Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Ide, T., Okada, M.: Numerical simulation for a nonlinear partial differential equation with variable coefficients by means of the discrete variational derivative method. J. Comput. Appl. Math. 194, 425–459 (2006)MathSciNetCrossRefMATH Ide, T., Okada, M.: Numerical simulation for a nonlinear partial differential equation with variable coefficients by means of the discrete variational derivative method. J. Comput. Appl. Math. 194, 425–459 (2006)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “average vector field” method. J. Comput. Phys. 231, 6770–6789 (2012)MathSciNetCrossRefMATH Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “average vector field” method. J. Comput. Phys. 231, 6770–6789 (2012)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Chabassier, J., Joly, P.: Energy preserving schemes for nonlinear Hamiltonian systems of wave equations: application to the vibrating piano string. Comput. Methods Appl. Mech. Eng. 199, 2779–2795 (2010)MathSciNetCrossRefMATH Chabassier, J., Joly, P.: Energy preserving schemes for nonlinear Hamiltonian systems of wave equations: application to the vibrating piano string. Comput. Methods Appl. Mech. Eng. 199, 2779–2795 (2010)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Schiesser, W.: The numerical methods of liness: integration of partial differential equation. Academic Press, San Diego (1991)MATH Schiesser, W.: The numerical methods of liness: integration of partial differential equation. Academic Press, San Diego (1991)MATH
16.
Zurück zum Zitat Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A. 41, 045206 (2008)MathSciNetCrossRefMATH Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A. 41, 045206 (2008)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Shampine, L.F.: Conservation laws and the numerical solution of ODEs. Math. Appl. B 12, 1287–1296 (1986)MathSciNetMATH Shampine, L.F.: Conservation laws and the numerical solution of ODEs. Math. Appl. B 12, 1287–1296 (1986)MathSciNetMATH
18.
Zurück zum Zitat McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A 357, 1021–1045 (1999)MathSciNetCrossRefMATH McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A 357, 1021–1045 (1999)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Iserles, A., Zanna, A.: Preserving algebraic invariants with Runge–Kutta methods. J. Comput. Appl. Math. 125, 69–81 (2000)MathSciNetCrossRefMATH Iserles, A., Zanna, A.: Preserving algebraic invariants with Runge–Kutta methods. J. Comput. Appl. Math. 125, 69–81 (2000)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Iserles, A., Quispel, G.R.W., Tse, P.S.P.: B-series methods cannot be volume-preserving. BIT Numer. Math. 47, 351–378 (2007)MathSciNetCrossRefMATH Iserles, A., Quispel, G.R.W., Tse, P.S.P.: B-series methods cannot be volume-preserving. BIT Numer. Math. 47, 351–378 (2007)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Hairer, E., McLachlan, R.I., Skeel, R.D.: On energy conservation of the simplified Takahashi-Imada method. Math. Model. Numer. Anal. 43, 631–644 (2009)MathSciNetCrossRefMATH Hairer, E., McLachlan, R.I., Skeel, R.D.: On energy conservation of the simplified Takahashi-Imada method. Math. Model. Numer. Anal. 43, 631–644 (2009)MathSciNetCrossRefMATH
22.
Zurück zum Zitat McLachlan, R.I., Quispel, G.R.W., Tse, P.S.P.: Linearization-preserving selfadjoint and symplectic integrators. BIT Numer. Math. 49, 177–197 (2009)CrossRefMATH McLachlan, R.I., Quispel, G.R.W., Tse, P.S.P.: Linearization-preserving selfadjoint and symplectic integrators. BIT Numer. Math. 49, 177–197 (2009)CrossRefMATH
23.
Zurück zum Zitat Wu, X., Wang, B., Shi, W.: Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)MathSciNetCrossRefMATH Wu, X., Wang, B., Shi, W.: Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Liu, K., Shi, W., Wu, X.: An extended discrete gradient formula for oscillatory Hamiltonian systems. J. Phys. A Math. Theor. 46(16520), 3 (2013)MathSciNetMATH Liu, K., Shi, W., Wu, X.: An extended discrete gradient formula for oscillatory Hamiltonian systems. J. Phys. A Math. Theor. 46(16520), 3 (2013)MathSciNetMATH
25.
Zurück zum Zitat Wang, B., Wu, X., Meng, F.: Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second order differential equations. J. Comput. Appl. Math. 313, 185–201 (2017)MathSciNetCrossRefMATH Wang, B., Wu, X., Meng, F.: Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second order differential equations. J. Comput. Appl. Math. 313, 185–201 (2017)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Wang, B., Yang, H., Meng, F.: Sixth order symplectic and symmetric explicit ERKN schemes for solving multi frequency oscillatory nonlinear Hamiltonian equations. Calcolo 54, 117–140 (2017)MathSciNetCrossRefMATH Wang, B., Yang, H., Meng, F.: Sixth order symplectic and symmetric explicit ERKN schemes for solving multi frequency oscillatory nonlinear Hamiltonian equations. Calcolo 54, 117–140 (2017)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Wang, B., Iserles, A., Wu, X.: Arbitrary order trigonometric Fourier collocation methods for second-order ODEs. Found. Comput. Math. 16, 151–181 (2016)MathSciNetCrossRefMATH Wang, B., Iserles, A., Wu, X.: Arbitrary order trigonometric Fourier collocation methods for second-order ODEs. Found. Comput. Math. 16, 151–181 (2016)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Lions, J., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)CrossRefMATH Lions, J., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)CrossRefMATH
29.
Zurück zum Zitat Butcher, J.C.: Numerical Analysis of Ordinary Differential Equations, 2nd edn. Wiley, New York (2008)CrossRefMATH Butcher, J.C.: Numerical Analysis of Ordinary Differential Equations, 2nd edn. Wiley, New York (2008)CrossRefMATH
30.
Zurück zum Zitat Lambert, J.D., Watson, I.A.: Symmetric multistip methods for periodic initial value problems. J. Inst. Math. Appl. 18(189–20), 2 (1976) Lambert, J.D., Watson, I.A.: Symmetric multistip methods for periodic initial value problems. J. Inst. Math. Appl. 18(189–20), 2 (1976)
31.
Zurück zum Zitat Dehghan, M., Mohebbi, A., Asgari, Z.: Fourth-order compact solution of the nonlinear Klein–Gordon equation. Numer. Algor. 52, 523–540 (2009)MathSciNetCrossRefMATH Dehghan, M., Mohebbi, A., Asgari, Z.: Fourth-order compact solution of the nonlinear Klein–Gordon equation. Numer. Algor. 52, 523–540 (2009)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Bratsos, A.G.: A numerical method for the one-dimentional sine-Gordon equation. Numer. Mehods Partial Differ. Equ. 24(833–84), 4 (2008) Bratsos, A.G.: A numerical method for the one-dimentional sine-Gordon equation. Numer. Mehods Partial Differ. Equ. 24(833–84), 4 (2008)
33.
Zurück zum Zitat Mohebbi, A., Dehghan, M.: High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods. Math. Comput. Model. 51, 537–549 (2010)MathSciNetCrossRefMATH Mohebbi, A., Dehghan, M.: High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods. Math. Comput. Model. 51, 537–549 (2010)MathSciNetCrossRefMATH
Metadaten
Titel
An energy-preserving algorithm for nonlinear Hamiltonian wave equations with Neumann boundary conditions
verfasst von
Wei Shi
Kai Liu
Xinyuan Wu
Changying Liu
Publikationsdatum
02.08.2017
Verlag
Springer Milan
Erschienen in
Calcolo / Ausgabe 4/2017
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-017-0232-5

Weitere Artikel der Ausgabe 4/2017

Calcolo 4/2017 Zur Ausgabe