Skip to main content
Erschienen in:

11.09.2023 | Original Paper

An enhanced battery model using a hybrid genetic algorithm and particle swarm optimization

verfasst von: Elhachemi Mammeri, Aimad Ahriche, Ammar Necaibia, Ahmed Bouraiou, Saad Mekhilef, Rachid Dabou, Abderrezzaq Ziane

Erschienen in: Electrical Engineering | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Batteries are widely used for energy storage in stand-alone PV systems. However, both PV modules and batteries exhibit nonlinear behavior. Therefore, battery modeling is an essential step toward appropriate battery control and overall PV system management. Empirical models remain reliable for lead-acid batteries, especially the Copetti model, which describes many inner and outer battery phenomena, including temperature dependency. However, the parameters of the Copetti model require further adjustment to increase its ability to accurately represent battery behavior. Recently, metaheuristic algorithms have been employed for parameter identification, especially hybrid algorithms that combine the advantages of two or more algorithms. This paper proposes an enhanced battery model based on the Copetti model. The parameter identification of the enhanced model has been carried out using a novel hybrid PSO-GA algorithm (HPGA). The hybrid algorithm combines GA and PSO in a cascade configuration, with GA as the master algorithm. The HPGA algorithm has been compared with other algorithms, namely GA, PSO, ABC, COA, and a hybrid GWO-COA, to reveal its advantages and disadvantages. The NRMSE is used to evaluate algorithms in terms of tracking speed and efficiency. HPGA shows an improvement in tracking efficiency compared to GA and PSO. The proposed model is validated on several charging-discharging data and exhibits a 15% lower mean error compared to the Copetti model with original parameters. Additionally, the proposed model demonstrates a lower mean error of 0.16% compared to other models in the literature with a 0.36% mean error at least.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
25.
Zurück zum Zitat Zaman HRR, Gharehchopogh FS (2021) An improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problems. Springer, London Zaman HRR, Gharehchopogh FS (2021) An improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problems. Springer, London
46.
Zurück zum Zitat Hamdan M (2010) On the disruption-level of polynomial mutation for evolutionary multi-objective optimisation algorithms. Comput Inform 29:783–800MATH Hamdan M (2010) On the disruption-level of polynomial mutation for evolutionary multi-objective optimisation algorithms. Comput Inform 29:783–800MATH
Metadaten
Titel
An enhanced battery model using a hybrid genetic algorithm and particle swarm optimization
verfasst von
Elhachemi Mammeri
Aimad Ahriche
Ammar Necaibia
Ahmed Bouraiou
Saad Mekhilef
Rachid Dabou
Abderrezzaq Ziane
Publikationsdatum
11.09.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 6/2023
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-023-01996-z