Skip to main content

2025 | OriginalPaper | Buchkapitel

An Enhanced Keylogger Detection Systems Using Recurrent Neural Networks Enabled with Feature Selection Model

verfasst von : Joseph Bamidele Awotunde, Samarendra Nath Sur, Agbotiname Lucky Imoize, Demóstenes Zegarra Rodríguez, Boluwatife Akanji

Erschienen in: Advances in Communication, Devices and Networking

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Keyloggers are malicious software programs that record keystrokes of users without their consent or knowledge. They can steal sensitive information like credit card numbers and passwords. They pose a significant threat to users’ privacy and security since they capture keystroke data. Keylogger detection systems play a vital role in safeguarding users from cyberattacks and mitigating the potential harm caused by keyloggers. Keylogger detection systems employing deep learning have been widely used for identifying and mitigating cyber threats associated with keyloggers. However, they struggle to identify new or unfamiliar keylogger samples. This study aims to explore deep learning techniques with feature selection model to detect keylogger. This study employs Recurrent Neural Networks (RNNs) using a collection of known keylogger dataset. Furthermore, a correlation-based feature extraction method was applied to identify the most relevant features for the model, highlighting the importance of specific features, such as URG flag Count, ACK flag count, and Idle Mean, in differentiating between benign and keylog classes. The proposed model demonstrates superior accuracy of 0.8763 and precision of 0.8569 compared to a baseline model using Logistic Regression (LR) 0.7721 and 0.7407, respectively, indicating a better balance between accurate classification and minimizing false negatives and false positives. The findings from this study help to improve keylogger detection methods, making them more powerful and efficient. These results suggest that a keylogger-based detection system employing a deep learning approach can be a valuable tool for addressing the complex and evolving landscape of cyber threats related to keylogging.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sabu J, Ananthanarayanan S, Gopan A, Gowtham S, Murali S (2023) Advanced keylogger with keystroke dynamics. In: 2023 international conference on inventive computation technologies (ICICT), Apr 2023. IEEE, pp 1598–1603 Sabu J, Ananthanarayanan S, Gopan A, Gowtham S, Murali S (2023) Advanced keylogger with keystroke dynamics. In: 2023 international conference on inventive computation technologies (ICICT), Apr 2023. IEEE, pp 1598–1603
2.
Zurück zum Zitat Mijwil M, Aljanabi M (2023) Towards artificial intelligence-based cybersecurity: the practices and ChatGPT generated ways to combat cybercrime. Iraqi J Comput Sci Math 4(1):65–70 Mijwil M, Aljanabi M (2023) Towards artificial intelligence-based cybersecurity: the practices and ChatGPT generated ways to combat cybercrime. Iraqi J Comput Sci Math 4(1):65–70
3.
Zurück zum Zitat Singh A, Choudhary P (2021) Keylogger detection and prevention. J Phys Conf Ser 2007(1):012005. IOP Publishing Singh A, Choudhary P (2021) Keylogger detection and prevention. J Phys Conf Ser 2007(1):012005. IOP Publishing
4.
Zurück zum Zitat Solairaj A, Prabanand SC, Mathalairaj J, Prathap C, Vignesh LS (2016) Keyloggers software detection techniques. In: 2016 10th international conference on intelligent systems and control (ISCO), Jan 2016. IEEE, pp 1–6 Solairaj A, Prabanand SC, Mathalairaj J, Prathap C, Vignesh LS (2016) Keyloggers software detection techniques. In: 2016 10th international conference on intelligent systems and control (ISCO), Jan 2016. IEEE, pp 1–6
5.
Zurück zum Zitat EyalSalman RT (2023) Android stalkerware detection techniques: a survey study. In: 2023 IEEE Jordan international joint conference on electrical engineering and information technology (JEEIT), May 2023. IEEE, pp 270–275 EyalSalman RT (2023) Android stalkerware detection techniques: a survey study. In: 2023 IEEE Jordan international joint conference on electrical engineering and information technology (JEEIT), May 2023. IEEE, pp 270–275
6.
Zurück zum Zitat Ruhani ABB, Zolkipli MF (2023) Keylogger: the unsung hacking weapon. Borneo Int J 6(1):33–43. eISSN 2636-9826 Ruhani ABB, Zolkipli MF (2023) Keylogger: the unsung hacking weapon. Borneo Int J 6(1):33–43. eISSN 2636-9826
7.
Zurück zum Zitat Alahmadi AA, Aljabri M, Alhaidari F, Alharthi DJ, Rayani GE, Marghalani LA et al (2023) DDoS attack detection in IoT-based networks using machine learning models: a survey and research directions. Electronics 12(14):3103CrossRef Alahmadi AA, Aljabri M, Alhaidari F, Alharthi DJ, Rayani GE, Marghalani LA et al (2023) DDoS attack detection in IoT-based networks using machine learning models: a survey and research directions. Electronics 12(14):3103CrossRef
8.
Zurück zum Zitat Gopinath M, Sethuraman SC (2023) A comprehensive survey on deep learning based malware detection techniques. Comput Sci Rev 47:100529CrossRef Gopinath M, Sethuraman SC (2023) A comprehensive survey on deep learning based malware detection techniques. Comput Sci Rev 47:100529CrossRef
9.
Zurück zum Zitat Bhardwaj A, Goundar S (2020) Keyloggers: silent cyber security weapons. Netw Secur 2020(2):14–19CrossRef Bhardwaj A, Goundar S (2020) Keyloggers: silent cyber security weapons. Netw Secur 2020(2):14–19CrossRef
10.
Zurück zum Zitat AbdulRaheem M, Oladipo ID, Imoize AL, Awotunde JB, Lee CC, Balogun GB, Adeoti JO (2023) Machine learning assisted snort and zeek in detecting DDoS attacks in software-defined networking. Int J Inf Technol 1–17 AbdulRaheem M, Oladipo ID, Imoize AL, Awotunde JB, Lee CC, Balogun GB, Adeoti JO (2023) Machine learning assisted snort and zeek in detecting DDoS attacks in software-defined networking. Int J Inf Technol 1–17
11.
Zurück zum Zitat Awotunde JB, Oguns YJ, Amuda KA, Nigar N, Adeleke TA, Olagunju KM, Ajagbe SA (2023) Cyber-physical systems security: analysis, opportunities, challenges, and future prospects. In: Blockchain for cybersecurity in cyber-physical systems, pp 21–46 Awotunde JB, Oguns YJ, Amuda KA, Nigar N, Adeleke TA, Olagunju KM, Ajagbe SA (2023) Cyber-physical systems security: analysis, opportunities, challenges, and future prospects. In: Blockchain for cybersecurity in cyber-physical systems, pp 21–46
12.
Zurück zum Zitat Menghani G (2023) Efficient deep learning: a survey on making deep learning models smaller, faster, and better. ACM Comput Surv 55(12):1–37CrossRef Menghani G (2023) Efficient deep learning: a survey on making deep learning models smaller, faster, and better. ACM Comput Surv 55(12):1–37CrossRef
13.
Zurück zum Zitat Ayo FE, Awotunde JB, Misra S, Ajagbe SA, Mishra N (2022) A rule-based deep learning method for predicting price of used cars. In: International conference on machine intelligence and signal processing, Mar 2022. Springer Nature Singapore, Singapore, pp 845–857 Ayo FE, Awotunde JB, Misra S, Ajagbe SA, Mishra N (2022) A rule-based deep learning method for predicting price of used cars. In: International conference on machine intelligence and signal processing, Mar 2022. Springer Nature Singapore, Singapore, pp 845–857
14.
Zurück zum Zitat Alghamdi SM, Othathi ES, Alsulami BS (2022) Detect keyloggers by using machine learning. In: 2022 fifth national conference of Saudi computers colleges (NCCC), Dec 2022. IEEE, pp 193–200 Alghamdi SM, Othathi ES, Alsulami BS (2022) Detect keyloggers by using machine learning. In: 2022 fifth national conference of Saudi computers colleges (NCCC), Dec 2022. IEEE, pp 193–200
15.
Zurück zum Zitat Rai S, Choubey V, Garg P (2022) A systematic review of encryption and keylogging for computer system security. In: 2022 fifth international conference on computational intelligence and communication technologies (CCICT), July 2022. IEEE, pp 157–163 Rai S, Choubey V, Garg P (2022) A systematic review of encryption and keylogging for computer system security. In: 2022 fifth international conference on computational intelligence and communication technologies (CCICT), July 2022. IEEE, pp 157–163
16.
Zurück zum Zitat Darus MY, Ariffin MAM (2022) Enhancement keylogger application for parental control and monitor children’s activities. J Posit Sch Psychol 6(3):8482–8492 Darus MY, Ariffin MAM (2022) Enhancement keylogger application for parental control and monitor children’s activities. J Posit Sch Psychol 6(3):8482–8492
17.
Zurück zum Zitat Tang M, Alazab M, Luo Y (2017) Big data for cybersecurity: vulnerability disclosure trends and dependencies. IEEE Trans Big Data 5(3):317–329CrossRef Tang M, Alazab M, Luo Y (2017) Big data for cybersecurity: vulnerability disclosure trends and dependencies. IEEE Trans Big Data 5(3):317–329CrossRef
18.
Zurück zum Zitat Jimoh RG, Imoize AL, Awotunde JB, Ojo S, Akanbi MB, Bamigbaye JA, Faruk N (2022) An enhanced deep neural network enabled with cuckoo search algorithm for intrusion detection in wide area networks. In: 2022 5th information technology for education and development (ITED), Nov 2022. IEEE, pp 1–5 Jimoh RG, Imoize AL, Awotunde JB, Ojo S, Akanbi MB, Bamigbaye JA, Faruk N (2022) An enhanced deep neural network enabled with cuckoo search algorithm for intrusion detection in wide area networks. In: 2022 5th information technology for education and development (ITED), Nov 2022. IEEE, pp 1–5
19.
Zurück zum Zitat Awotunde JB, Sur SN, Aderinto MT, Gaber T (2022) RFID-based student identification card attendance monitoring system. In: International conference on communication, devices and networking, Dec 2022. Springer Nature Singapore, Singapore, pp 31–41 Awotunde JB, Sur SN, Aderinto MT, Gaber T (2022) RFID-based student identification card attendance monitoring system. In: International conference on communication, devices and networking, Dec 2022. Springer Nature Singapore, Singapore, pp 31–41
20.
Zurück zum Zitat Awotunde JB, Gaber T, Prasad LN, Folorunso SO, Lalitha VL (2023) Privacy and security enhancement of smart cities using hybrid deep learning-enabled blockchain. Scalable Comput Pract Exp 24(3):561–584CrossRef Awotunde JB, Gaber T, Prasad LN, Folorunso SO, Lalitha VL (2023) Privacy and security enhancement of smart cities using hybrid deep learning-enabled blockchain. Scalable Comput Pract Exp 24(3):561–584CrossRef
Metadaten
Titel
An Enhanced Keylogger Detection Systems Using Recurrent Neural Networks Enabled with Feature Selection Model
verfasst von
Joseph Bamidele Awotunde
Samarendra Nath Sur
Agbotiname Lucky Imoize
Demóstenes Zegarra Rodríguez
Boluwatife Akanji
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_42