Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

21.05.2020 | Ausgabe 1/2021

Natural Computing 1/2021

An enhanced monarch butterfly optimization with self-adaptive crossover operator for unconstrained and constrained optimization problems

Zeitschrift:
Natural Computing > Ausgabe 1/2021
Autor:
Mingyang Chen
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Inspired by the phenomenon of migration of monarch butterflies, Wang et al. developed a novel promising swarm intelligence algorithm, called monarch butterfly optimization (MBO), for addressing unconstrained low-dimensional optimization problems. In this paper, we firstly extend the application area of the basic MBO to solve the constrained optimization problems. At the same time, the crossover operator originally used in evolutionary algorithms (EAs) is incorporated into the butterfly adjusting operator in order to strengthen the exploitation of the basic MBO algorithm. Furthermore, the crossover rate is self-adaptively adjusted according to the fitness of the corresponding individual instead of the fixed crossover rate used in EAs. For migration operator, only individuals having better fitness are accepted and passed to the next generation instead of accepting all the individuals in the basic MBO algorithm. After incorporated all the modifications into the basic MBO algorithm, an improved MBO algorithm with self-adaptive crossover namely SACMBO, is proposed for unstrained and constrained optimization problems. Finally, the proposed SACMBO algorithm is further used to solve 22 unstrained optimization problems (with dimension of 100, 300, 500, 1000, and 1500) and 28 constrained real-parameter optimization functions from CEC 2017 competition (with dimension of 50 and 100), respectively. The experimental results indicate that the proposed SACMBO algorithm outperforms the basic MBO and other five state-of-the-art metaheuristic algorithms.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2021

Natural Computing 1/2021 Zur Ausgabe

Premium Partner