Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.07.2013 | Original Article | Ausgabe 4/2013

International Journal of Computer Assisted Radiology and Surgery 4/2013

An evaluation of image descriptors combined with clinical data for breast cancer diagnosis

Zeitschrift:
International Journal of Computer Assisted Radiology and Surgery > Ausgabe 4/2013
Autoren:
Daniel C. Moura, Miguel A. Guevara López
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s11548-013-0838-2) contains supplementary material, which is available to authorized users.

Abstract

Purpose   

Breast cancer computer-aided diagnosis (CADx) may utilize image descriptors, demographics, clinical observations, or a combination. CADx performance was compared for several image features, clinical descriptors (e.g. age and radiologist’s observations), and combinations of both kinds of data. A novel descriptor invariant to rotation, histograms of gradient divergence (HGD), was developed to deal with round-shaped objects, such as masses. HGD was compared with conventional CADx features.

Method

HGD and 11 conventional image descriptors were evaluated using cases from two publicly available mammography data sets, the digital database for screening mammography (DDSM) and the breast cancer digital repository (BCDR), with 1,762 and 362 instances, respectively. Three experiments were done for each data set according to the type of lesion (i.e., all lesions, masses, and calcifications), resulting in six scenarios. For each scenario, 100 training and test sets were generated via resampling without replacement and five machine learning classifiers were used to assess the diagnostic performance of the descriptors.

Results

Clinical descriptors outperformed image descriptors in the DDSM sample (three out of six scenarios), and combining the two kind of descriptors was advantageous in five out of six scenarios. HGD was the best descriptor (or comparable to best) in 8 out of 12 scenarios, demonstrating promising capabilities to describe masses.

Conclusions

The combination of clinical data and image descriptors was advantageous in most mammography CADx scenarios. A new descriptor based on the divergence of the gradient (HGD) was demonstrated to be a feasible predictor of breast masses’ diagnosis.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Nur für berechtigte Nutzer zugänglich
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2013

International Journal of Computer Assisted Radiology and Surgery 4/2013 Zur Ausgabe

Premium Partner

    Bildnachweise