Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 7/2020

05.02.2020 | Research Article-Mechanical Engineering

An Experimental Analysis and Parametric Simulation of Vibration-Based Piezo-Aeroelastic Energy Harvesting Using an Aerodynamic Wing Profile

verfasst von: Fevzi Cakmak Bolat

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, an aeroelastic structure is formed by connecting an aerodynamic profile to the end of a piezoelectric material-glued beam element. The aerodynamic profile is continuously vibrated at the first natural frequency of the structure using an air nozzle. Due to the resonance effect occurred by the vibration of the system, harvested energy from the aeroelastic structure is maximized. In this work, an experimental study on the energy harvesting from the piezo-aeroelastic structure is carried out. In addition, a theoretical model is developed in MATLAB/Simulink environment and obtained analytical results are validated with experimental results. The effect of air velocity on energy harvesting is investigated considering different air velocities. Besides, energy conversion efficiency is calculated and the effects of damping ratio, frequency ratio and coupling factor of the piezoelectric material on the energy conversion efficiency are examined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Erturk, A.; Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 130(4), 041002 (2008)CrossRef Erturk, A.; Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 130(4), 041002 (2008)CrossRef
2.
Zurück zum Zitat Erturk, A.; Vieira, W.G.R.; De Marqui Jr., C.; Inman, D.J.: On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 96(18), 184103 (2010)CrossRef Erturk, A.; Vieira, W.G.R.; De Marqui Jr., C.; Inman, D.J.: On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 96(18), 184103 (2010)CrossRef
3.
Zurück zum Zitat Zhou, Z.; Qin, W.; Zhu, P.; Shang, S.: Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings. Energy 153, 400–412 (2018)CrossRef Zhou, Z.; Qin, W.; Zhu, P.; Shang, S.: Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings. Energy 153, 400–412 (2018)CrossRef
4.
Zurück zum Zitat Zhang, L.B.; Abdelkefi, A.; Dai, H.L.; Naseer, R.; Wang, L.: Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations. J. Sound Vib. 408, 210–219 (2017)CrossRef Zhang, L.B.; Abdelkefi, A.; Dai, H.L.; Naseer, R.; Wang, L.: Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations. J. Sound Vib. 408, 210–219 (2017)CrossRef
5.
Zurück zum Zitat Javed, U.; Abdelkefi, A.; Akhtar, I.: An improved stability characterization for aeroelastic energy harvesting applications. Commun. Nonlinear Sci. Numer. Simul. 36, 252–265 (2016)CrossRef Javed, U.; Abdelkefi, A.; Akhtar, I.: An improved stability characterization for aeroelastic energy harvesting applications. Commun. Nonlinear Sci. Numer. Simul. 36, 252–265 (2016)CrossRef
6.
Zurück zum Zitat Bryant, M.; Fang, A.; Garcia, E.: Self-powered smart blade: helicopter blade energy harvesting. In: Ghasemi-Nejhad, M.N. (ed.) Active and Passive Smart Structures and Integrated Systems, vol. 7643, p. 764317. International Society for Optics and Photonics, San Diego, California, United States (2010)CrossRef Bryant, M.; Fang, A.; Garcia, E.: Self-powered smart blade: helicopter blade energy harvesting. In: Ghasemi-Nejhad, M.N. (ed.) Active and Passive Smart Structures and Integrated Systems, vol. 7643, p. 764317. International Society for Optics and Photonics, San Diego, California, United States (2010)CrossRef
7.
Zurück zum Zitat Bibo, A.; Daqaq, M.F.: Energy harvesting under combined aerodynamic and base excitations. J. Sound Vib. 332(20), 5086–5102 (2013)CrossRef Bibo, A.; Daqaq, M.F.: Energy harvesting under combined aerodynamic and base excitations. J. Sound Vib. 332(20), 5086–5102 (2013)CrossRef
8.
Zurück zum Zitat Bryant, M.; Mahtani, R.L.; Garcia, E.: Wake synergies enhance performance in aeroelastic vibration energy harvesting. J. Intell. Mater. Syst. Struct. 23(10), 1131–1141 (2012)CrossRef Bryant, M.; Mahtani, R.L.; Garcia, E.: Wake synergies enhance performance in aeroelastic vibration energy harvesting. J. Intell. Mater. Syst. Struct. 23(10), 1131–1141 (2012)CrossRef
9.
Zurück zum Zitat Liu, S.; Li, P.; Yang, Y.: On the design of an electromagnetic aeroelastic energy harvester from nonlinear flutter. Meccanica 53(11–12), 2807–2831 (2018)MathSciNetCrossRef Liu, S.; Li, P.; Yang, Y.: On the design of an electromagnetic aeroelastic energy harvester from nonlinear flutter. Meccanica 53(11–12), 2807–2831 (2018)MathSciNetCrossRef
10.
Zurück zum Zitat Dai, H.L.; Abdelkefi, A.; Wang, L.: Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations. J. Intell. Mater. Syst. Struct. 25(14), 1861–1874 (2014)CrossRef Dai, H.L.; Abdelkefi, A.; Wang, L.: Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations. J. Intell. Mater. Syst. Struct. 25(14), 1861–1874 (2014)CrossRef
11.
Zurück zum Zitat Sobhanirad, S.; Afsharfard, A.: Improving application of galloping-based energy harvesters in realistic condition. Arch. Appl. Mech. 89(2), 313–328 (2019)CrossRef Sobhanirad, S.; Afsharfard, A.: Improving application of galloping-based energy harvesters in realistic condition. Arch. Appl. Mech. 89(2), 313–328 (2019)CrossRef
12.
Zurück zum Zitat Zhao, L.; Yang, Y.: Analytical solutions for galloping-based piezoelectric energy harvesters with various interfacing circuits. Smart Mater. Struct. 24(7), 075023 (2015)MathSciNetCrossRef Zhao, L.; Yang, Y.: Analytical solutions for galloping-based piezoelectric energy harvesters with various interfacing circuits. Smart Mater. Struct. 24(7), 075023 (2015)MathSciNetCrossRef
13.
Zurück zum Zitat Wu, Y.; Li, D.; Xiang, J.; Da Ronch, A.: Piezoaeroelastic energy harvesting based on an airfoil with double plunge degrees of freedom: modeling and numerical analysis. J. Fluids Struct. 74, 111–129 (2017)CrossRef Wu, Y.; Li, D.; Xiang, J.; Da Ronch, A.: Piezoaeroelastic energy harvesting based on an airfoil with double plunge degrees of freedom: modeling and numerical analysis. J. Fluids Struct. 74, 111–129 (2017)CrossRef
14.
Zurück zum Zitat Uttayopas, P.; Kittichaikarn, C.: Effects of downstream structures on aero elastic energy harvesters from wake-induced vibration. J. Fluids Eng. 141(7), 071103 (2019)CrossRef Uttayopas, P.; Kittichaikarn, C.: Effects of downstream structures on aero elastic energy harvesters from wake-induced vibration. J. Fluids Eng. 141(7), 071103 (2019)CrossRef
15.
Zurück zum Zitat He, X.; Yang, X.; Jiang, S.: Enhancement of wind energy harvesting by interaction between vortex-induced vibration and galloping. Appl. Phys. Lett. 112(3), 033901 (2018)CrossRef He, X.; Yang, X.; Jiang, S.: Enhancement of wind energy harvesting by interaction between vortex-induced vibration and galloping. Appl. Phys. Lett. 112(3), 033901 (2018)CrossRef
16.
Zurück zum Zitat Abdelmoula, H.; Abdelkefi, A.: Investigations on the presence of electrical frequency on the characteristics of energy harvesters under base and galloping excitations. Nonlinear Dyn. 89(4), 2461–2479 (2017)MathSciNetCrossRef Abdelmoula, H.; Abdelkefi, A.: Investigations on the presence of electrical frequency on the characteristics of energy harvesters under base and galloping excitations. Nonlinear Dyn. 89(4), 2461–2479 (2017)MathSciNetCrossRef
17.
Zurück zum Zitat Liang, X.; Zhang, R.; Hu, S.; Shen, S.: Flexoelectric energy harvesters based on Timoshenko laminated beam theory. J. Intell. Mater. Syst. Struct. 28(15), 2064–2073 (2017)CrossRef Liang, X.; Zhang, R.; Hu, S.; Shen, S.: Flexoelectric energy harvesters based on Timoshenko laminated beam theory. J. Intell. Mater. Syst. Struct. 28(15), 2064–2073 (2017)CrossRef
18.
Zurück zum Zitat Fang, F.; Xia, G.; Wang, J.: Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta. Mech. Sin. 34(3), 561–577 (2018)MathSciNetCrossRef Fang, F.; Xia, G.; Wang, J.: Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta. Mech. Sin. 34(3), 561–577 (2018)MathSciNetCrossRef
19.
Zurück zum Zitat Selig, M.S.; McGranahan, B.D.: Wind tunnel aerodynamic tests of six airfoils for use on small wind turbines. J. Solar Energy Eng. (Trans. ASME) 126(4), 986–1001 (2004)CrossRef Selig, M.S.; McGranahan, B.D.: Wind tunnel aerodynamic tests of six airfoils for use on small wind turbines. J. Solar Energy Eng. (Trans. ASME) 126(4), 986–1001 (2004)CrossRef
20.
Zurück zum Zitat Xiaobiao, S.; Zhenlong, X.; Rujun, S.; Tao, X.: A new mathematical model for a piezoelectric-electromagnetic hybrid energy harvester. Ferroelectrics 450(1), 57–65 (2013)CrossRef Xiaobiao, S.; Zhenlong, X.; Rujun, S.; Tao, X.: A new mathematical model for a piezoelectric-electromagnetic hybrid energy harvester. Ferroelectrics 450(1), 57–65 (2013)CrossRef
21.
Zurück zum Zitat Richards, C.D.; Anderson, M.J.; Bahr, D.F.; Richards, R.F.: Efficiency of energy conversion for devices containing a piezoelectric component. J. Micromech. Microeng. 14(5), 717 (2004)CrossRef Richards, C.D.; Anderson, M.J.; Bahr, D.F.; Richards, R.F.: Efficiency of energy conversion for devices containing a piezoelectric component. J. Micromech. Microeng. 14(5), 717 (2004)CrossRef
22.
Zurück zum Zitat Shu, Y.-C.; Lien, I.C.: Efficiency of energy conversion for a piezoelectric power harvesting system. J. Micromech. Microeng. 16(11), 2429 (2006)CrossRef Shu, Y.-C.; Lien, I.C.: Efficiency of energy conversion for a piezoelectric power harvesting system. J. Micromech. Microeng. 16(11), 2429 (2006)CrossRef
Metadaten
Titel
An Experimental Analysis and Parametric Simulation of Vibration-Based Piezo-Aeroelastic Energy Harvesting Using an Aerodynamic Wing Profile
verfasst von
Fevzi Cakmak Bolat
Publikationsdatum
05.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 7/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04373-1

Weitere Artikel der Ausgabe 7/2020

Arabian Journal for Science and Engineering 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.