Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2012

01.07.2012

An Experimental Evaluation of Material Properties and Fracture Simulation of Cryorolled 7075 Al Alloy

verfasst von: Prosenjit Das, I. V. Singh, R. Jayaganthan

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presents an experimental evaluation of yield strength, tensile strength, and impact toughness of 7075 Al alloy. The extended finite element method (XFEM) has been chosen for quasi-static crack growth simulations using Charpy impact energy as the crack growth criterion for both Bulk and ultrafine-grained (UFG) 7075 Al alloy. The 7075 Al alloy is rolled for different thickness reductions (40 and 70%) at cryogenic (liquid nitrogen) temperature, and its mechanical properties are studied by performing the tensile and Charpy impact testing. The microstructural characterization of the alloy was carried out using field emission scanning electron microscopy (FE-SEM). The rolling of the Al alloy at cryogenic temperature suppresses dynamic recovery, and dislocation cells formed during processing, transformed into fully formed ultrafine-grains (600 nm) at 70% thickness reduction. The impact energy used as the crack growth criterion under quasi-static loading condition based on the Griffith energy concept. The elastic-plastic ductile fracture simulations are performed by XFEM using ABAQUS Software (Version 6.9). For crack modeling, two different types of functions are used to model a crack based on partition of unity concept. A discontinuous function is used to model the portion behind the crack tip, whereas crack tip is modeled by near-tip asymptotic functions. This permits the crack is to be represented explicitly without meshing the crack surfaces, thus crack propagation simulations can be carried out without a need of re-meshing. Strain energy release and stress distribution ahead of the crack tip is found for some practical crack problems. The numerical examples indicate a significant improvement in crack growth properties of UFG 7075 Al alloy as compared to its bulk form due to an effective grain refinement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Wang, M. Chen, F. Zhou, and E. Ma, High Tensile Ductility in a Nanostructured Metal, Nature, 2002, 419, p 912–915CrossRef Y. Wang, M. Chen, F. Zhou, and E. Ma, High Tensile Ductility in a Nanostructured Metal, Nature, 2002, 419, p 912–915CrossRef
2.
Zurück zum Zitat T.R. Lee, C.P. Chang, and P.W. Kao, The Tensile Behavior and Deformation Microstructure of Cryo-Rolled and Annealed Pure Nickel, Mater. Sci. Eng. A, 2005, 408, p 131–135CrossRef T.R. Lee, C.P. Chang, and P.W. Kao, The Tensile Behavior and Deformation Microstructure of Cryo-Rolled and Annealed Pure Nickel, Mater. Sci. Eng. A, 2005, 408, p 131–135CrossRef
3.
Zurück zum Zitat S.K. Panigrahi and R. Jayaganthan, A Comparative Study on Mechanical Properties of Al 7075 Alloy Processed by Rolling at Cryogenic Temperature and Room Temperature, Mater. Sci. Forum, 2008, 584–586, p 734–740CrossRef S.K. Panigrahi and R. Jayaganthan, A Comparative Study on Mechanical Properties of Al 7075 Alloy Processed by Rolling at Cryogenic Temperature and Room Temperature, Mater. Sci. Forum, 2008, 584–586, p 734–740CrossRef
4.
Zurück zum Zitat R. Jayaganthan and S.K. Panigrahi, Effect of Cryorolling Strain on Precipitation Kinetics of Al 7075 Alloy, Mater. Sci. Forum, 2008, 584–586, p 911–916CrossRef R. Jayaganthan and S.K. Panigrahi, Effect of Cryorolling Strain on Precipitation Kinetics of Al 7075 Alloy, Mater. Sci. Forum, 2008, 584–586, p 911–916CrossRef
5.
Zurück zum Zitat Y.B. Lee, D.H. Shin, K.T. Park, and W.J. Nam, Effect of Annealing Temperature on Microstructures and Mechanical Properties of a 5083 Al Alloy Deformed at Cryogenic Temperature, Scripta Mater., 2004, 51, p 355–359CrossRef Y.B. Lee, D.H. Shin, K.T. Park, and W.J. Nam, Effect of Annealing Temperature on Microstructures and Mechanical Properties of a 5083 Al Alloy Deformed at Cryogenic Temperature, Scripta Mater., 2004, 51, p 355–359CrossRef
6.
Zurück zum Zitat T. Shanmugasundaram, B.S. Murty, and V.S. Sarma, Development of Ultrafine Grained High Strength Al-Cu Alloy by Cryorolling, Scripta Mater., 2006, 54, p 2013–2017CrossRef T. Shanmugasundaram, B.S. Murty, and V.S. Sarma, Development of Ultrafine Grained High Strength Al-Cu Alloy by Cryorolling, Scripta Mater., 2006, 54, p 2013–2017CrossRef
7.
Zurück zum Zitat X.M. Li and M.J. Stranik, Effect of Compositional Variations on Characteristics of Coarse Intermetallic Particles in Overaged 7000 Aluminium Alloys, Mater. Sci. Technol., 2001, 17, p 1324–1328 X.M. Li and M.J. Stranik, Effect of Compositional Variations on Characteristics of Coarse Intermetallic Particles in Overaged 7000 Aluminium Alloys, Mater. Sci. Technol., 2001, 17, p 1324–1328
8.
Zurück zum Zitat N. Sukumar and J.H. Prevost, Modeling Quasi-Static Crack Growth with the Extended Finite Element Method Part I. Computer Implementation, Int. J. Solids Struct., 2003, 40, p 7513–7537CrossRef N. Sukumar and J.H. Prevost, Modeling Quasi-Static Crack Growth with the Extended Finite Element Method Part I. Computer Implementation, Int. J. Solids Struct., 2003, 40, p 7513–7537CrossRef
9.
Zurück zum Zitat R. Huang, N. Sukumar, and J.H. Prevost, Modeling Quasi-static Crack Growth with the Extended Finite Element Method Part II, Numerical Applications, Int. J. Solids Struct., 2003, 40, p 7539–7552CrossRef R. Huang, N. Sukumar, and J.H. Prevost, Modeling Quasi-static Crack Growth with the Extended Finite Element Method Part II, Numerical Applications, Int. J. Solids Struct., 2003, 40, p 7539–7552CrossRef
10.
Zurück zum Zitat M.J. McNary, Implementation of the Extended Finite Element Method (XFEM) in the ABAQUS Software Package, Master Thesis, Georgia Institute of Technology, May 2009. M.J. McNary, Implementation of the Extended Finite Element Method (XFEM) in the ABAQUS Software Package, Master Thesis, Georgia Institute of Technology, May 2009.
11.
Zurück zum Zitat Z. Yang, An Energy-Based Crack Growth Criterion for Modelling Elastic-Plastic Ductile Fracture, Mech. Res. Commun., 2005, 32, p 514–524CrossRef Z. Yang, An Energy-Based Crack Growth Criterion for Modelling Elastic-Plastic Ductile Fracture, Mech. Res. Commun., 2005, 32, p 514–524CrossRef
12.
Zurück zum Zitat C. Fan, P.Y. Ben Jar, and J.J. Roger Cheng, Prediction of Energy Release Rates for Crack Growth Using FEM-Based Energy Derivative Technique, Eng. Fract. Mech., 2007, 74, p 1243–1254CrossRef C. Fan, P.Y. Ben Jar, and J.J. Roger Cheng, Prediction of Energy Release Rates for Crack Growth Using FEM-Based Energy Derivative Technique, Eng. Fract. Mech., 2007, 74, p 1243–1254CrossRef
13.
Zurück zum Zitat W. Li and T. Siegmund, An Analysis of Crack Growth in Thin-Sheet Metal Via a Cohesive Zone Model, Eng. Fract. Mech., 2002, 69, p 2073–2093CrossRef W. Li and T. Siegmund, An Analysis of Crack Growth in Thin-Sheet Metal Via a Cohesive Zone Model, Eng. Fract. Mech., 2002, 69, p 2073–2093CrossRef
14.
Zurück zum Zitat E. Giner, N. Sukumar, J.E. Tarancon, and F.J. Fuenmayor, An Abaqus Implementation of the Extended Finite Element Method, Eng. Fract. Mech., 2009, 76(3), p 347–368CrossRef E. Giner, N. Sukumar, J.E. Tarancon, and F.J. Fuenmayor, An Abaqus Implementation of the Extended Finite Element Method, Eng. Fract. Mech., 2009, 76(3), p 347–368CrossRef
15.
Zurück zum Zitat J.H. Chen, Q. Wang, G.Z. Wang, and Z. Li, Fracture Behavior at Crack Tip—A New Framework for Cleavage Mechanism of Steel, Acta Mater., 2003, 51, p 1841–1855CrossRef J.H. Chen, Q. Wang, G.Z. Wang, and Z. Li, Fracture Behavior at Crack Tip—A New Framework for Cleavage Mechanism of Steel, Acta Mater., 2003, 51, p 1841–1855CrossRef
16.
Zurück zum Zitat D. Markovic and A. Ibrahimbegovic, Complementary Energy Based FE Modelling of Coupled Elasto-Plastic and Damage Behavior for Continuum Microstructure Computations, Comput. Methods Appl. Mech. Eng., 2006, 195, p 5077–5093CrossRef D. Markovic and A. Ibrahimbegovic, Complementary Energy Based FE Modelling of Coupled Elasto-Plastic and Damage Behavior for Continuum Microstructure Computations, Comput. Methods Appl. Mech. Eng., 2006, 195, p 5077–5093CrossRef
17.
Zurück zum Zitat I.L. Lim, I.W. Johnston, and S.K. Choi, A Finite Element Code for Fracture Propagation Analysis Within Elasto-Plastic Continuum, Eng. Fract. Mech., 1996, 53(2), p 193–211CrossRef I.L. Lim, I.W. Johnston, and S.K. Choi, A Finite Element Code for Fracture Propagation Analysis Within Elasto-Plastic Continuum, Eng. Fract. Mech., 1996, 53(2), p 193–211CrossRef
18.
Zurück zum Zitat Z. Wang and T. Nakamura, Simulations of Crack Propagation in Elastic-Plastic Graded Materials, Mech. Mater., 2004, 36, p 601–622CrossRef Z. Wang and T. Nakamura, Simulations of Crack Propagation in Elastic-Plastic Graded Materials, Mech. Mater., 2004, 36, p 601–622CrossRef
19.
Zurück zum Zitat N. Moes and T. Belytschko, Extended Finite Element Method for Cohesive Crack Growth, Eng. Fract. Mech., 2002, 69, p 813–833CrossRef N. Moes and T. Belytschko, Extended Finite Element Method for Cohesive Crack Growth, Eng. Fract. Mech., 2002, 69, p 813–833CrossRef
20.
Zurück zum Zitat A. Yazid, N. Abdelkader, and H. Abdelmadjid, A State-of-the-Art Review of the X-FEM for Computational Fracture Mechanics, Appl. Math. Modell., 2009, 33, p 4269–4282CrossRef A. Yazid, N. Abdelkader, and H. Abdelmadjid, A State-of-the-Art Review of the X-FEM for Computational Fracture Mechanics, Appl. Math. Modell., 2009, 33, p 4269–4282CrossRef
21.
Zurück zum Zitat T. Belytschko and T. Black, Elastic Crack Growth in Finite Elements with Minimal Remeshing, Int. J. Numer. Methods Eng., 1999, 45, p 601–620CrossRef T. Belytschko and T. Black, Elastic Crack Growth in Finite Elements with Minimal Remeshing, Int. J. Numer. Methods Eng., 1999, 45, p 601–620CrossRef
22.
Zurück zum Zitat M. Tajally, Z. Huda, and H.H. Masjuki, A Comparative Analysis of Tensile and Impact-Toughness Behavior of Cold-Worked and Annealed 7075 Aluminum Alloy, Int. J. Impact Eng., 2010, 37, p 425–432CrossRef M. Tajally, Z. Huda, and H.H. Masjuki, A Comparative Analysis of Tensile and Impact-Toughness Behavior of Cold-Worked and Annealed 7075 Aluminum Alloy, Int. J. Impact Eng., 2010, 37, p 425–432CrossRef
23.
Zurück zum Zitat J.G. Michopoulos, Directional Instability of Crack Propagation with Energy Dissipation, Theor. Appl. Fract. Mech., 1988, 10, p 177–189CrossRef J.G. Michopoulos, Directional Instability of Crack Propagation with Energy Dissipation, Theor. Appl. Fract. Mech., 1988, 10, p 177–189CrossRef
24.
Zurück zum Zitat S. Xu and X. Zhang, Determination of Fracture Parameters for Crack Propagation in Concrete Using an Energy Approach, Eng. Fract. Mech., 2008, 75, p 4292–4308CrossRef S. Xu and X. Zhang, Determination of Fracture Parameters for Crack Propagation in Concrete Using an Energy Approach, Eng. Fract. Mech., 2008, 75, p 4292–4308CrossRef
25.
Zurück zum Zitat U. Tzadka and K. Schulgasser, Energy Approach to Crack Growth in a Fiber-Reinforced Brittle Material Modeled by an Inclusion, Theor. Appl. Fract. Mech., 2009, 52, p 72–82CrossRef U. Tzadka and K. Schulgasser, Energy Approach to Crack Growth in a Fiber-Reinforced Brittle Material Modeled by an Inclusion, Theor. Appl. Fract. Mech., 2009, 52, p 72–82CrossRef
28.
Zurück zum Zitat S.K. Panigrahi, R. Jayaganthan, and V. Pancholi, Effect of Plastic Deformation Conditions on Microstructural Characteristics and Mechanical Properties of Al 6063 Alloy, Mater. Des., 2009, 30, p 1894–1901CrossRef S.K. Panigrahi, R. Jayaganthan, and V. Pancholi, Effect of Plastic Deformation Conditions on Microstructural Characteristics and Mechanical Properties of Al 6063 Alloy, Mater. Des., 2009, 30, p 1894–1901CrossRef
29.
Zurück zum Zitat P. Das, R. Jayaganthan, and I.V. Singh, Tensile and Impact-Toughness Behaviour of Cryorolled Al 7075 Alloy, Mater. Des., 2011, 32(3), p 1298–1305CrossRef P. Das, R. Jayaganthan, and I.V. Singh, Tensile and Impact-Toughness Behaviour of Cryorolled Al 7075 Alloy, Mater. Des., 2011, 32(3), p 1298–1305CrossRef
30.
Zurück zum Zitat P. Das, R. Jayaganthan, T. Chowdhury, and I.V. Singh, Improvement of Fracture Toughness (K1c) of 7075 Al Alloy by Cryorolling Process, Mater. Sci. Forum, 2011, 683, p 81–94CrossRef P. Das, R. Jayaganthan, T. Chowdhury, and I.V. Singh, Improvement of Fracture Toughness (K1c) of 7075 Al Alloy by Cryorolling Process, Mater. Sci. Forum, 2011, 683, p 81–94CrossRef
31.
Zurück zum Zitat P. Das, R. Jayaganthan, T. Chowdhury, and I.V. Singh, Fatigue Behaviour and Crack Growth Rate of Cryorolled Al 7075 Alloy, Mater. Sci. Eng. A, 2011, 528, p 7124–7132CrossRef P. Das, R. Jayaganthan, T. Chowdhury, and I.V. Singh, Fatigue Behaviour and Crack Growth Rate of Cryorolled Al 7075 Alloy, Mater. Sci. Eng. A, 2011, 528, p 7124–7132CrossRef
32.
Zurück zum Zitat ABAQUS Analysis User’s Manual (Version 6.9), United States of America, ABAQUS Inc., 2009 ABAQUS Analysis User’s Manual (Version 6.9), United States of America, ABAQUS Inc., 2009
Metadaten
Titel
An Experimental Evaluation of Material Properties and Fracture Simulation of Cryorolled 7075 Al Alloy
verfasst von
Prosenjit Das
I. V. Singh
R. Jayaganthan
Publikationsdatum
01.07.2012
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2012
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-011-0062-6

Weitere Artikel der Ausgabe 7/2012

Journal of Materials Engineering and Performance 7/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.