Skip to main content
Erschienen in: Polymer Bulletin 8/2018

17.10.2017 | Original Paper

An experimental investigation and optimization on the impact strength of kenaf fiber biocomposite: application of response surface methodology

verfasst von: Hessameddin Yaghoobi, Abdolhossein Fereidoon

Erschienen in: Polymer Bulletin | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A big scientific challenge of biocomposites is in improving impact strength. Thus, the key aspect of the present study is in investigating an in-depth statistical approach on influence of processing parameters on the impact strength of the biocomposite. Natural fiber biocomposites, consisting of polypropylene (PP) and kenaf as natural fiber, were produced using melt blending. The simultaneous effects of different parameters including kenaf fiber loading, fiber length and polypropylene-grafted maleic anhydride (PP-g-MA) compatibilizer content on the impact strength have been evaluated. Response surface methodology (RSM) based on Box–Behnken design (BBD) was used to design the experiments. The optimum impact strength of 30.76 j/m was obtained with kenaf fiber loading of 26.77 wt%, fiber length of 6.09 mm and PP-g-MA content of 5 wt%. The biocomposites prepared with optimum levels of fabrication process parameters that were obtained using the response surface graph and models, had a 19% increase in impact strength than pure PP. Among the selected processing parameters, fiber loading has a most significant effect on the impact strength of the biocomposites. The thermal behavior of the kenaf fiber was evaluated from TGA/DTG thermograms. The fiber-matrix morphology in the treated biocomposites with PP-g-MA was confirmed by SEM analysis of the fractured specimens. FTIR spectra of the biocomposite with and without PP-g-MA were also studied to ascertain the existence of type of interfacial bonds. Finally, the crystallinity of PP and the biocomposites were also studied through DSC measurements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Campilho RDSG (2016) Natural fiber composites. CRC Press, Taylor & Francis Group Campilho RDSG (2016) Natural fiber composites. CRC Press, Taylor & Francis Group
3.
Zurück zum Zitat Zhang L, Zhong J, Ren X (2017) Natural fiber-based biocomposites. Green biocomposites. Springer, New York, pp 31–70CrossRef Zhang L, Zhong J, Ren X (2017) Natural fiber-based biocomposites. Green biocomposites. Springer, New York, pp 31–70CrossRef
4.
Zurück zum Zitat Bajpai PK, Singh I, Madaan J (2012) Comparative studies of mechanical and morphological properties of polylactic acid and polypropylene based natural fiber composites. J Reinf Plast Compos 31:1712–1724. doi:10.1177/0731684412447992 CrossRef Bajpai PK, Singh I, Madaan J (2012) Comparative studies of mechanical and morphological properties of polylactic acid and polypropylene based natural fiber composites. J Reinf Plast Compos 31:1712–1724. doi:10.​1177/​0731684412447992​ CrossRef
5.
Zurück zum Zitat Lee HS, Cho D, Han SO (2008) Effect of natural fiber surface treatments on the interfacial and mechanical properties of henequen/polypropylene biocomposites. Macromol Res 16:411–417. doi:10.1007/BF03218538 CrossRef Lee HS, Cho D, Han SO (2008) Effect of natural fiber surface treatments on the interfacial and mechanical properties of henequen/polypropylene biocomposites. Macromol Res 16:411–417. doi:10.​1007/​BF03218538 CrossRef
6.
Zurück zum Zitat Tan T, Santos SF, Savastano H, Soboyejo WO (2011) Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites. J Mater Sci 47:2864–2874. doi:10.1007/s10853-011-6116-1 CrossRef Tan T, Santos SF, Savastano H, Soboyejo WO (2011) Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites. J Mater Sci 47:2864–2874. doi:10.​1007/​s10853-011-6116-1 CrossRef
7.
Zurück zum Zitat Feng Y, Hu Y, Zhao G, Yin J, Jiang W (2011) Preparation and mechanical properties of high-performance short ramie fiber-reinforced polypropylene composites. J Appl Polym Sci 122:1564–1571. doi:10.1002/app.34281 CrossRef Feng Y, Hu Y, Zhao G, Yin J, Jiang W (2011) Preparation and mechanical properties of high-performance short ramie fiber-reinforced polypropylene composites. J Appl Polym Sci 122:1564–1571. doi:10.​1002/​app.​34281 CrossRef
8.
Zurück zum Zitat Senthil Kumar K, Siva I, Jeyaraj P, Winowlin Jappes JT, Amico SC, Rajini N (2014) Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams. Mater Des 1980–2015(56):379–386. doi:10.1016/j.matdes.2013.11.039 CrossRef Senthil Kumar K, Siva I, Jeyaraj P, Winowlin Jappes JT, Amico SC, Rajini N (2014) Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams. Mater Des 1980–2015(56):379–386. doi:10.​1016/​j.​matdes.​2013.​11.​039 CrossRef
10.
Zurück zum Zitat Pang A, Ismail H (2013) Effects of kenaf loading and 3-aminopropyltriethoxysilane coupling agent on the properties of polypropylene/waste tire dust/kenaf composites. J Thermoplast Compos Mater 27:1607–1619. doi:10.1177/0892705712475002 CrossRef Pang A, Ismail H (2013) Effects of kenaf loading and 3-aminopropyltriethoxysilane coupling agent on the properties of polypropylene/waste tire dust/kenaf composites. J Thermoplast Compos Mater 27:1607–1619. doi:10.​1177/​0892705712475002​ CrossRef
11.
12.
Zurück zum Zitat Akhtar MN, Sulong AB, Radzi MKF, Ismail NF, Raza MR, Muhamad N, Khan MA (2016) Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Prog Nat Sci 26:657–664. doi:10.1016/j.pnsc.2016.12.004 CrossRef Akhtar MN, Sulong AB, Radzi MKF, Ismail NF, Raza MR, Muhamad N, Khan MA (2016) Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Prog Nat Sci 26:657–664. doi:10.​1016/​j.​pnsc.​2016.​12.​004 CrossRef
13.
Zurück zum Zitat Pang AL, Ismail H (2014) Influence of kenaf form and loading on the properties of kenaf-filled polypropylene/waste tire dust composites: a comparison study. J Appl Polym Sci 131:233–265. doi:10.1002/app.40877 CrossRef Pang AL, Ismail H (2014) Influence of kenaf form and loading on the properties of kenaf-filled polypropylene/waste tire dust composites: a comparison study. J Appl Polym Sci 131:233–265. doi:10.​1002/​app.​40877 CrossRef
19.
Zurück zum Zitat Asumani OML, Reid RG, Paskaramoorthy R (2012) The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Compos Part A Appl Sci Manuf 43:1431–1440. doi:10.1016/j.compositesa.2012.04.007 CrossRef Asumani OML, Reid RG, Paskaramoorthy R (2012) The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Compos Part A Appl Sci Manuf 43:1431–1440. doi:10.​1016/​j.​compositesa.​2012.​04.​007 CrossRef
23.
Zurück zum Zitat Joseph S, Sreekala M, Oommen Z, Koshy P, Thomas S (2002) A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos Sci Technol 62:1857–1868. doi:10.1016/S0266-3538(02)00098-2 CrossRef Joseph S, Sreekala M, Oommen Z, Koshy P, Thomas S (2002) A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos Sci Technol 62:1857–1868. doi:10.​1016/​S0266-3538(02)00098-2 CrossRef
24.
Zurück zum Zitat Thirmizir MZA, Ishak ZAM, Taib RM, Rahim S, Jani SM (2011) Kenaf-bast-fiber-filled biodegradable poly(butylene succinate) composites: effects of fiber loading, fiber length, and maleated poly(butylene succinate) on the flexural and impact properties. J Appl Polym Sci 122:3055–3063. doi:10.1002/app.34046 CrossRef Thirmizir MZA, Ishak ZAM, Taib RM, Rahim S, Jani SM (2011) Kenaf-bast-fiber-filled biodegradable poly(butylene succinate) composites: effects of fiber loading, fiber length, and maleated poly(butylene succinate) on the flexural and impact properties. J Appl Polym Sci 122:3055–3063. doi:10.​1002/​app.​34046 CrossRef
25.
Zurück zum Zitat Mathew L, Joseph R (2007) Mechanical properties of short-isora-fiber-reinforced natural rubber composites: effects of fiber length, orientation, and loading; alkali treatment; and bonding agent. J Appl Polym Sci 103:1640–1650. doi:10.1002/app.25065 CrossRef Mathew L, Joseph R (2007) Mechanical properties of short-isora-fiber-reinforced natural rubber composites: effects of fiber length, orientation, and loading; alkali treatment; and bonding agent. J Appl Polym Sci 103:1640–1650. doi:10.​1002/​app.​25065 CrossRef
26.
Zurück zum Zitat Kwon H-J, Sunthornvarabhas J, Park J-W, Lee J-H, Kim H-J, Piyachomkwan K, Sriroth K, Cho D (2014) Tensile properties of kenaf fiber and corn husk flour reinforced poly(lactic acid) hybrid bio-composites: role of aspect ratio of natural fibers. Compos Part B Eng 56:232–237. doi:10.1016/j.compositesb.2013.08.003 CrossRef Kwon H-J, Sunthornvarabhas J, Park J-W, Lee J-H, Kim H-J, Piyachomkwan K, Sriroth K, Cho D (2014) Tensile properties of kenaf fiber and corn husk flour reinforced poly(lactic acid) hybrid bio-composites: role of aspect ratio of natural fibers. Compos Part B Eng 56:232–237. doi:10.​1016/​j.​compositesb.​2013.​08.​003 CrossRef
27.
Zurück zum Zitat George J, Sreekala M, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471–1485. doi:10.1002/pen.10846 CrossRef George J, Sreekala M, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471–1485. doi:10.​1002/​pen.​10846 CrossRef
28.
Zurück zum Zitat Feng D, Caulfield D, Sanadi A (2001) Effect of compatibilizer on the structure-property relationships of kenaf-fiber/polypropylene composites. Polym Compos 22:506–517. doi:10.1002/pc.10555 CrossRef Feng D, Caulfield D, Sanadi A (2001) Effect of compatibilizer on the structure-property relationships of kenaf-fiber/polypropylene composites. Polym Compos 22:506–517. doi:10.​1002/​pc.​10555 CrossRef
30.
Zurück zum Zitat Mohanty A, Drzal L, Misra M (2002) Engineered natural fiber reinforced polypropylene composites: influence of surface modifications and novel powder impregnation processing. J Adhes Sci Technol 16:999–1015. doi:10.1163/156856102760146129 CrossRef Mohanty A, Drzal L, Misra M (2002) Engineered natural fiber reinforced polypropylene composites: influence of surface modifications and novel powder impregnation processing. J Adhes Sci Technol 16:999–1015. doi:10.​1163/​1568561027601461​29 CrossRef
31.
Zurück zum Zitat Ismail H, Hamid Abdullah A, Abu Bakar A (2010) Kenaf core reinforced high-density polyethylene/soya powder composites: the effects of filler loading and compatibilizer. J Reinf Plast Compos 29:2489–2497. doi:10.1177/0731684409354392 CrossRef Ismail H, Hamid Abdullah A, Abu Bakar A (2010) Kenaf core reinforced high-density polyethylene/soya powder composites: the effects of filler loading and compatibilizer. J Reinf Plast Compos 29:2489–2497. doi:10.​1177/​0731684409354392​ CrossRef
32.
34.
Zurück zum Zitat Chapman R, Institute T (2010) Applications of nonwovens in technical textiles. Woodhead Publishing, SwastonCrossRef Chapman R, Institute T (2010) Applications of nonwovens in technical textiles. Woodhead Publishing, SwastonCrossRef
35.
Zurück zum Zitat Saba N, Paridah M, Jawaid M, Abdan K, Ibrahim N (2015) Potential utilization of kenaf biomass in different applications. Agricultural biomass based potential materials. Springer, New york, pp 1–34 Saba N, Paridah M, Jawaid M, Abdan K, Ibrahim N (2015) Potential utilization of kenaf biomass in different applications. Agricultural biomass based potential materials. Springer, New york, pp 1–34
36.
Zurück zum Zitat Montgomery DC (2008) Design and analysis of experiments. John Wiley & Sons, Hoboken Montgomery DC (2008) Design and analysis of experiments. John Wiley & Sons, Hoboken
37.
Zurück zum Zitat Rostamiyan Y, Hamed Mashhadzadeh A, SalmanKhani A (2014) Optimization of mechanical properties of epoxy-based hybrid nanocomposite: effect of using nano silica and high-impact polystyrene by mixture design approach. Mater Des 1980–2015(56):1068–1077. doi:10.1016/j.matdes.2013.11.060 CrossRef Rostamiyan Y, Hamed Mashhadzadeh A, SalmanKhani A (2014) Optimization of mechanical properties of epoxy-based hybrid nanocomposite: effect of using nano silica and high-impact polystyrene by mixture design approach. Mater Des 1980–2015(56):1068–1077. doi:10.​1016/​j.​matdes.​2013.​11.​060 CrossRef
38.
Zurück zum Zitat Ashenai Ghasemi F, Daneshpayeh S, Ghasemi I, Ayaz M (2015) An investigation on the Young’s modulus and impact strength of nanocomposites based on polypropylene/linear low-density polyethylene/titan dioxide (PP/LLDPE/TiO2) using response surface methodology. Polym Bull 73:1741–1760. doi:10.1007/s00289-015-1574-2 CrossRef Ashenai Ghasemi F, Daneshpayeh S, Ghasemi I, Ayaz M (2015) An investigation on the Young’s modulus and impact strength of nanocomposites based on polypropylene/linear low-density polyethylene/titan dioxide (PP/LLDPE/TiO2) using response surface methodology. Polym Bull 73:1741–1760. doi:10.​1007/​s00289-015-1574-2 CrossRef
39.
Zurück zum Zitat Rostamiyan Y, Fereidoon A, Mashhadzadeh AH, Ashtiyani MR, Salmankhani A (2015) Using response surface methodology for modeling and optimizing tensile and impact strength properties of fiber orientated quaternary hybrid nano composite. Compos Part B Eng 69:304–316. doi:10.1016/j.compositesb.2014.09.031 CrossRef Rostamiyan Y, Fereidoon A, Mashhadzadeh AH, Ashtiyani MR, Salmankhani A (2015) Using response surface methodology for modeling and optimizing tensile and impact strength properties of fiber orientated quaternary hybrid nano composite. Compos Part B Eng 69:304–316. doi:10.​1016/​j.​compositesb.​2014.​09.​031 CrossRef
40.
Zurück zum Zitat Rostamiyan Y, Fereidoon A, Rezaeiashtiyani M, Hamed Mashhadzadeh A, Salmankhani A (2015) Experimental and optimizing flexural strength of epoxy-based nanocomposite: effect of using nano silica and nano clay by using response surface design methodology. Mater Des 69:96–104. doi:10.1016/j.matdes.2014.11.062 CrossRef Rostamiyan Y, Fereidoon A, Rezaeiashtiyani M, Hamed Mashhadzadeh A, Salmankhani A (2015) Experimental and optimizing flexural strength of epoxy-based nanocomposite: effect of using nano silica and nano clay by using response surface design methodology. Mater Des 69:96–104. doi:10.​1016/​j.​matdes.​2014.​11.​062 CrossRef
43.
Zurück zum Zitat Mhalla MM, Bahloul A, Bouraoui C (2017) Analytical models for predicting tensile strength and acoustic emission count of a glass fiber reinforced polyamide using response surface method. J Alloys Compd 695:2356–2364. doi:10.1016/j.jallcom.2016.11.108 CrossRef Mhalla MM, Bahloul A, Bouraoui C (2017) Analytical models for predicting tensile strength and acoustic emission count of a glass fiber reinforced polyamide using response surface method. J Alloys Compd 695:2356–2364. doi:10.​1016/​j.​jallcom.​2016.​11.​108 CrossRef
44.
Zurück zum Zitat Rostamiyan Y, Fereidoon A, Ghalebahman AG, Mashhadzadeh AH, Salmankhani A (2015) Experimental study and optimization of damping properties of epoxy-based nanocomposite: effect of using nanosilica and high-impact polystyrene by mixture design approach. Mater Des 1980–2015(65):1236–1244. doi:10.1016/j.matdes.2014.10.022 CrossRef Rostamiyan Y, Fereidoon A, Ghalebahman AG, Mashhadzadeh AH, Salmankhani A (2015) Experimental study and optimization of damping properties of epoxy-based nanocomposite: effect of using nanosilica and high-impact polystyrene by mixture design approach. Mater Des 1980–2015(65):1236–1244. doi:10.​1016/​j.​matdes.​2014.​10.​022 CrossRef
45.
Zurück zum Zitat Myers RH, Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product optimization using designed experiments. Wiley, Hoboken Myers RH, Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product optimization using designed experiments. Wiley, Hoboken
46.
Zurück zum Zitat Zabihzadeh SM, Ebrahimi G, Enayati AA (2011) Effect of compatibilizer on mechanical, morphological, and thermal properties of chemimechanical pulp-reinforced PP composites. J Thermoplast Compos Mater 24:221–231. doi:10.1177/0892705710387048 CrossRef Zabihzadeh SM, Ebrahimi G, Enayati AA (2011) Effect of compatibilizer on mechanical, morphological, and thermal properties of chemimechanical pulp-reinforced PP composites. J Thermoplast Compos Mater 24:221–231. doi:10.​1177/​0892705710387048​ CrossRef
47.
Zurück zum Zitat Chattopadhyay SK, Khandal R, Uppaluri R, Ghoshal AK (2010) Mechanical, thermal, and morphological properties of maleic anhydride-g-polypropylene compatibilized and chemically modified banana-fiber-reinforced polypropylene composites. J Appl Polym Sci 117:1731–1740. doi:10.1002/app.32065 CrossRef Chattopadhyay SK, Khandal R, Uppaluri R, Ghoshal AK (2010) Mechanical, thermal, and morphological properties of maleic anhydride-g-polypropylene compatibilized and chemically modified banana-fiber-reinforced polypropylene composites. J Appl Polym Sci 117:1731–1740. doi:10.​1002/​app.​32065 CrossRef
54.
Zurück zum Zitat Arifuzzaman Khan G, Shaheruzzaman M, Rahman M, Abdur Razzaque S, Islam MS, Alam MS (2009) Surface modification of okra bast fiber and its physico-chemical characteristics. Fiber Polym 10:65–70. doi:10.1007/s12221-009-0065-1 CrossRef Arifuzzaman Khan G, Shaheruzzaman M, Rahman M, Abdur Razzaque S, Islam MS, Alam MS (2009) Surface modification of okra bast fiber and its physico-chemical characteristics. Fiber Polym 10:65–70. doi:10.​1007/​s12221-009-0065-1 CrossRef
57.
Zurück zum Zitat Jonoobi M, Harun J, Mishra M, Oksman K (2009) Chemical composition, crystallinity and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofiber. BioResources 4:626–639 Jonoobi M, Harun J, Mishra M, Oksman K (2009) Chemical composition, crystallinity and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofiber. BioResources 4:626–639
59.
61.
Zurück zum Zitat Mohanty S, Verma SK, Nayak SK, Tripathy SS (2004) Influence of fiber treatment on the performance of sisal–polypropylene composites. J Appl Polym Sci 94:1336–1345. doi:10.1002/app.21161 CrossRef Mohanty S, Verma SK, Nayak SK, Tripathy SS (2004) Influence of fiber treatment on the performance of sisal–polypropylene composites. J Appl Polym Sci 94:1336–1345. doi:10.​1002/​app.​21161 CrossRef
62.
Zurück zum Zitat Ndiaye D, Matuana LM, Morlat-Therias S, Vidal L, Tidjani A, Gardette JL (2011) Thermal and mechanical properties of polypropylene/wood-flour composites. J Appl Polym Sci 119:3321–3328. doi:10.1002/app.32985 CrossRef Ndiaye D, Matuana LM, Morlat-Therias S, Vidal L, Tidjani A, Gardette JL (2011) Thermal and mechanical properties of polypropylene/wood-flour composites. J Appl Polym Sci 119:3321–3328. doi:10.​1002/​app.​32985 CrossRef
63.
Zurück zum Zitat Ibrahim AN, Wahit MU, Yussuf AA (2014) Effect of fiber reinforcement on mechanical and thermal properties of poly (ɛ-caprolactone)/poly (lactic acid) blend composites. Fiber Polym 15:574–582. doi:10.1007/s12221-014-0574-4 CrossRef Ibrahim AN, Wahit MU, Yussuf AA (2014) Effect of fiber reinforcement on mechanical and thermal properties of poly (ɛ-caprolactone)/poly (lactic acid) blend composites. Fiber Polym 15:574–582. doi:10.​1007/​s12221-014-0574-4 CrossRef
65.
Zurück zum Zitat Song Y, Liu J, Chen S, Zheng Y, Ruan S, Bin Y (2013) Mechanical properties of poly (lactic acid)/hemp fiber composites prepared with a novel method. J Polym Environ 21:1117–1127. doi:10.1007/s10924-013-0569-z CrossRef Song Y, Liu J, Chen S, Zheng Y, Ruan S, Bin Y (2013) Mechanical properties of poly (lactic acid)/hemp fiber composites prepared with a novel method. J Polym Environ 21:1117–1127. doi:10.​1007/​s10924-013-0569-z CrossRef
66.
Zurück zum Zitat Ahmad E, Luyt A (2012) Morphology, thermal, and dynamic mechanical properties of poly (lactic acid)/sisal whisker nanocomposites. Polym Compos 33:1025–1032. doi:10.1002/pc.22236 CrossRef Ahmad E, Luyt A (2012) Morphology, thermal, and dynamic mechanical properties of poly (lactic acid)/sisal whisker nanocomposites. Polym Compos 33:1025–1032. doi:10.​1002/​pc.​22236 CrossRef
67.
Zurück zum Zitat Roumeli E, Terzopoulou Z, Pavlidou E, Chrissafis K, Papadopoulou E, Athanasiadou E, Triantafyllidis K, Bikiaris DN (2015) Effect of maleic anhydride on the mechanical and thermal properties of hemp/high-density polyethylene green composites. J Therm Anal Calorim 121:93–105. doi:10.1007/s10973-015-4596-y CrossRef Roumeli E, Terzopoulou Z, Pavlidou E, Chrissafis K, Papadopoulou E, Athanasiadou E, Triantafyllidis K, Bikiaris DN (2015) Effect of maleic anhydride on the mechanical and thermal properties of hemp/high-density polyethylene green composites. J Therm Anal Calorim 121:93–105. doi:10.​1007/​s10973-015-4596-y CrossRef
Metadaten
Titel
An experimental investigation and optimization on the impact strength of kenaf fiber biocomposite: application of response surface methodology
verfasst von
Hessameddin Yaghoobi
Abdolhossein Fereidoon
Publikationsdatum
17.10.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 8/2018
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-017-2212-y

Weitere Artikel der Ausgabe 8/2018

Polymer Bulletin 8/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.