Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 5-6/2020

22.05.2020 | ORIGINAL ARTICLE

An experimental investigation of the effectiveness of Ar-CO2 shielding gas mixture for the wire arc additive process

verfasst von: Bishal Silwal, Andrzej Nycz, Christopher J. Masuo, Mark W. Noakes, David Marsh, Derek Vaughan

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 5-6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wire arc additive manufacturing (AM) is the process by which a large, metallic structure is built layer-by-layer using a welding arc to melt a wire feedstock. A novel opportunity exists to alter the shielding gas composition to fabricate distinct geometrical features without altering the other AM parameters. In the following study, shielding gases with varied concentrations of Argon (Ar) and CO2 was used to deposit three distinct geometric shapes (walls, infill, and overhang) using a wire-based additive manufacturing system utilizing the gas metal arc welding (GMAW) surface tension transfer (STT) process. Computer-aided design (CAD) models were sliced with a custom-built slicer, and the sliced algorithm was converted into optimal robotic toolpaths. A custom virtual instrument (VI) was built in LabVIEW to compare the temperature profiles on the surface during each deposition process. After each deposition, the geometric features were scanned, and the surface waviness value was evaluated. Tensile and Charpy impact coupons were extracted from the wall geometries in the longitudinal and transverse directions and tested. The results indicated that a higher CO2 content produced higher melt pool temperatures to an extent, while lower contents of CO2 resulted in a dimensionally accurate geometry. The data also indicated that the 2%/98% CO2/Ar blend produced scatter in tensile strength and the analysis of variance (ANOVA) shows significant difference. However, the intermediate range of CO2 (5–10%) resulted in uniform tensile properties. Altogether, these results indicate that a 5%/95% CO2/Ar blend is the ideal shielding gas for lowering process temperatures and improving mechanical properties in wire arc additive manufacturing using the gas metal arc welding surface tension transfer process. Additionally, varying concentrations of Ar/CO2 can be used within the same part in order to modify the local properties or process parameters such as strength, toughness, temperature, or dimensional features. This may improve overall manufacturing quality without sacrificing specific properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nycz, A., et al. (2016, August). Large scale metal additive techniques review. In Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium. Nycz, A., et al. (2016, August). Large scale metal additive techniques review. In Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium.
2.
Zurück zum Zitat Nycz, A., et al. (2017). Challenges in making complex metal large-scale parts for additive manufacturing: A case study based on the additive manufacturing excavator. In Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference. Nycz, A., et al. (2017). Challenges in making complex metal large-scale parts for additive manufacturing: A case study based on the additive manufacturing excavator. In Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference.
3.
Zurück zum Zitat Prinz FB, Weiss LE (1993) Method and apparatus for fabrication of three-dimensional metal articles by weld deposition. Google Patents Prinz FB, Weiss LE (1993) Method and apparatus for fabrication of three-dimensional metal articles by weld deposition. Google Patents
4.
Zurück zum Zitat Ley F et al (2015) Effect of shielding gas parameters on weld metal thermal properties in gas metal arc welding. Int J Adv Manuf Technol 80(5-8):1213–1221CrossRef Ley F et al (2015) Effect of shielding gas parameters on weld metal thermal properties in gas metal arc welding. Int J Adv Manuf Technol 80(5-8):1213–1221CrossRef
5.
Zurück zum Zitat Ding D et al (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol 81(1-4):465–481CrossRef Ding D et al (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol 81(1-4):465–481CrossRef
6.
Zurück zum Zitat Baufeld B (2012) Mechanical properties of Inconel 718 parts manufactured by shaped metal deposition (SMD). J Mater Eng Perform 21(7):1416–1421CrossRef Baufeld B (2012) Mechanical properties of Inconel 718 parts manufactured by shaped metal deposition (SMD). J Mater Eng Perform 21(7):1416–1421CrossRef
7.
Zurück zum Zitat Martina F, Williams S, Colegrove P (2014) Improved microstructure and increased mechanical properties of additive manufacture produced TI-6AL-4V by interpass cold rolling. In: 24th International Solid Freeform Fabrication Symposium, 12–14 August 2014, Austin TX, USA Martina F, Williams S, Colegrove P (2014) Improved microstructure and increased mechanical properties of additive manufacture produced TI-6AL-4V by interpass cold rolling. In: 24th International Solid Freeform Fabrication Symposium, 12–14 August 2014, Austin TX, USA
8.
Zurück zum Zitat Wang LL et al (2014) Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels. J Phys D Appl Phys 47(46):465202CrossRef Wang LL et al (2014) Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels. J Phys D Appl Phys 47(46):465202CrossRef
9.
Zurück zum Zitat Liskevych O, Scotti A (2015) Influence of the CO 2 content on operational performance of short-circuit GMAW. Weld World 59(2):217–224CrossRef Liskevych O, Scotti A (2015) Influence of the CO 2 content on operational performance of short-circuit GMAW. Weld World 59(2):217–224CrossRef
10.
Zurück zum Zitat Soderstrom EJ, Mendez PF (2008) Metal transfer during GMAW with thin electrodes and Ar-CO~ 2 shielding gas mixtures. Weld J NY 87(5):124 Soderstrom EJ, Mendez PF (2008) Metal transfer during GMAW with thin electrodes and Ar-CO~ 2 shielding gas mixtures. Weld J NY 87(5):124
11.
Zurück zum Zitat Norrish J, Cuiuri D (2014) The controlled short circuit GMAW process: a tutorial. J Manuf Process 16(1):86–92CrossRef Norrish J, Cuiuri D (2014) The controlled short circuit GMAW process: a tutorial. J Manuf Process 16(1):86–92CrossRef
12.
Zurück zum Zitat Scotti A, Ponomarev V, Lucas W (2012) A scientific application oriented classification for metal transfer modes in GMA welding. J Mater Process Technol 212(6):1406–1413CrossRef Scotti A, Ponomarev V, Lucas W (2012) A scientific application oriented classification for metal transfer modes in GMA welding. J Mater Process Technol 212(6):1406–1413CrossRef
13.
Zurück zum Zitat Kah P, Suoranta R, Martikainen J (2013) Advanced gas metal arc welding processes. Int J Adv Manuf Technol 67(1-4):655–674CrossRef Kah P, Suoranta R, Martikainen J (2013) Advanced gas metal arc welding processes. Int J Adv Manuf Technol 67(1-4):655–674CrossRef
14.
Zurück zum Zitat Lincoln Electric, Surface Tension Transfer. 10/05 Lincoln Electric, Surface Tension Transfer. 10/05
15.
Zurück zum Zitat Lincoln Electric, Superarc l-59r. 11/16 Lincoln Electric, Superarc l-59r. 11/16
16.
Zurück zum Zitat Electric, L (1999) Robotics:Joint Sensing Technologies Electric, L (1999) Robotics:Joint Sensing Technologies
17.
Zurück zum Zitat Lincoln Electric, Powerwave Manager. 12/2017 Lincoln Electric, Powerwave Manager. 12/2017
18.
Zurück zum Zitat Li D et al (2018) Effects of shielding gas on GMAW of 10Ni5CrMoV HSLA steel using high Cr-Ni austenitic wire. J Mater Process Technol 259:116–125CrossRef Li D et al (2018) Effects of shielding gas on GMAW of 10Ni5CrMoV HSLA steel using high Cr-Ni austenitic wire. J Mater Process Technol 259:116–125CrossRef
19.
Zurück zum Zitat Lu S, Fujii H, Nogi K (2004) Marangoni convection and weld shape variations in Ar–O2 and Ar–CO2 shielded GTA welding. Mater Sci Eng A 380(1-2):290–297CrossRef Lu S, Fujii H, Nogi K (2004) Marangoni convection and weld shape variations in Ar–O2 and Ar–CO2 shielded GTA welding. Mater Sci Eng A 380(1-2):290–297CrossRef
20.
Zurück zum Zitat Ogino Y, Hirata Y, Murphy AB (2016) Numerical simulation of GMAW process using Ar and an Ar–CO 2 gas mixture. Weld World 60(2):345–353CrossRef Ogino Y, Hirata Y, Murphy AB (2016) Numerical simulation of GMAW process using Ar and an Ar–CO 2 gas mixture. Weld World 60(2):345–353CrossRef
21.
Zurück zum Zitat DeRuntz BD (2003) Assessing the benefits of surface tension transfer welding to industry. J Ind Technol 19(4):55–62 DeRuntz BD (2003) Assessing the benefits of surface tension transfer welding to industry. J Ind Technol 19(4):55–62
22.
Zurück zum Zitat Hsu C System and method for estimating true heats of welding processes. 2004. Google Patents Hsu C System and method for estimating true heats of welding processes. 2004. Google Patents
23.
Zurück zum Zitat Sridharan N et al (2018) On the toughness scatter in low alloy C-Mn steel samples fabricated using wire arc additive manufacturing. Mater Sci Eng A 713:18–27CrossRef Sridharan N et al (2018) On the toughness scatter in low alloy C-Mn steel samples fabricated using wire arc additive manufacturing. Mater Sci Eng A 713:18–27CrossRef
24.
Zurück zum Zitat Song HY, Evans GM, Babu SS (2014) Effect of microstructural heterogeneities on scatter of toughness in multi-pass weld metal of C–Mn steels. Sci Technol Weld Join 19(5):376–384CrossRef Song HY, Evans GM, Babu SS (2014) Effect of microstructural heterogeneities on scatter of toughness in multi-pass weld metal of C–Mn steels. Sci Technol Weld Join 19(5):376–384CrossRef
25.
Zurück zum Zitat Chen JH, Xia TD, Yan C (1993) Study on impact toughness of C-Mn multilayer weld metal at-60 C. Weld J NY 72:19-s Chen JH, Xia TD, Yan C (1993) Study on impact toughness of C-Mn multilayer weld metal at-60 C. Weld J NY 72:19-s
26.
Zurück zum Zitat Tweed J, Knott J (1983) Effect of reheating on microstructure and toughness of C–Mn weld metal. Met Sci 17(2):45–54CrossRef Tweed J, Knott J (1983) Effect of reheating on microstructure and toughness of C–Mn weld metal. Met Sci 17(2):45–54CrossRef
27.
Zurück zum Zitat Shassere B, Nycz A, Noakes M, Masuo C, Sridharan N (2019) Correlation of microstructure and mechanical properties of metal big area additive manufacturing. Appl Sci 9(4):787CrossRef Shassere B, Nycz A, Noakes M, Masuo C, Sridharan N (2019) Correlation of microstructure and mechanical properties of metal big area additive manufacturing. Appl Sci 9(4):787CrossRef
Metadaten
Titel
An experimental investigation of the effectiveness of Ar-CO2 shielding gas mixture for the wire arc additive process
verfasst von
Bishal Silwal
Andrzej Nycz
Christopher J. Masuo
Mark W. Noakes
David Marsh
Derek Vaughan
Publikationsdatum
22.05.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 5-6/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05395-7

Weitere Artikel der Ausgabe 5-6/2020

The International Journal of Advanced Manufacturing Technology 5-6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.