Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

14.09.2018 | Original Article | Ausgabe 4/2019

International Journal of Machine Learning and Cybernetics 4/2019

An experimental study on symbolic extreme learning machine

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 4/2019
Autoren:
Jinga Liu, Muhammed J. A. Patwary, XiaoYun Sun, Kai Tao
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

With the advent of big data era, the volume and complexity of data have increased exponentially and the type of data has also been increased largely. Among all different types of data, symbolic data plays an important role in the study on machine learning model. It has been proved that feed-forward neural network (FNN) has a good ability to deal with numeric data but relatively clumsy with symbolic data. In this paper, a special type of FNN called Extreme Learning Machine (ELM) is discussed for handling symbolic data. Experimental results demonstrate that, unlike traditional back propagation based FNN, ELM has a better performance in comparison with C4.5 which is generally acknowledged as one of the best algorithms in handling symbolic data classification problems. In this performance comparison, some key evaluation criteria such as generalization ability, time complexity, the effect of training sample size and noise-resistance ability are taken into account.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2019

International Journal of Machine Learning and Cybernetics 4/2019 Zur Ausgabe