Skip to main content
Erschienen in:

05.07.2017

An Explicit Isometric Reduction of the Unit Sphere into an Arbitrarily Small Ball

verfasst von: Evangelis Bartzos, Vincent Borrelli, Roland Denis, Francis Lazarus, Damien Rohmer, Boris Thibert

Erschienen in: Foundations of Computational Mathematics | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spheres are known to be rigid geometric objects: they cannot be deformed isometrically, i.e., while preserving the length of curves, in a twice differentiable way. An unexpected result by Nash (Ann Math 60:383–396, 1954) and Kuiper (Indag Math 17:545–555, 1955) shows that this is no longer the case if one requires the deformations to be only continuously differentiable. A remarkable consequence of their result makes possible the isometric reduction of a unit sphere inside an arbitrarily small ball. In particular, if one views the Earth as a round sphere, the theory allows to reduce its diameter to that of a terrestrial globe while preserving geodesic distances. Here, we describe the first explicit construction and visualization of such a reduced sphere. The construction amounts to solve a nonlinear PDE with boundary conditions. The resulting surface consists of two unit spherical caps joined by a \(C^1\) fractal equatorial belt. An intriguing question then arises about the transition between the smooth and the \(C^1\) fractal geometries. We show that this transition is similar to the one observed when connecting a Koch curve to a line segment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Very recently, a formal construction of a deformed isometric sphere was obtained by considering isometric extensions [13, Cor. 1.3]. However, one equator is left unchanged in this approach, which prevents the sphere to be globally reduced.
 
Literatur
1.
Zurück zum Zitat François Apéry, Models of the real projective plane: computer graphics of Steiner and Boy surfaces, Springer, 1987. François Apéry, Models of the real projective plane: computer graphics of Steiner and Boy surfaces, Springer, 1987.
2.
Zurück zum Zitat Yurii F. Borisov, \({C}^{1,\alpha }\) isometric immersions of Riemannian spaces, Doklady Akademii Nauk SSSR 163 (1965), no. 1, 11.MathSciNet Yurii F. Borisov, \({C}^{1,\alpha }\) isometric immersions of Riemannian spaces, Doklady Akademii Nauk SSSR 163 (1965), no. 1, 11.MathSciNet
3.
Zurück zum Zitat Yurii F. Borisov, Irregular \({C}^{1,\beta }\) -surfaces with an analytic metric, Siberian Mathematical Journal 45 (2004), no. 1, 19–52.MathSciNetCrossRef Yurii F. Borisov, Irregular \({C}^{1,\beta }\) -surfaces with an analytic metric, Siberian Mathematical Journal 45 (2004), no. 1, 19–52.MathSciNetCrossRef
4.
Zurück zum Zitat Vincent Borrelli, Saïd Jabrane, Francis Lazarus, and Boris Thibert, Flat tori in three dimensional space and convex integration, Proceedings of the National Academy of Sciences of the United States of America (PNAS) 109 (2012), no. 19, 7218–7223.MathSciNetCrossRefMATH Vincent Borrelli, Saïd Jabrane, Francis Lazarus, and Boris Thibert, Flat tori in three dimensional space and convex integration, Proceedings of the National Academy of Sciences of the United States of America (PNAS) 109 (2012), no. 19, 7218–7223.MathSciNetCrossRefMATH
5.
Zurück zum Zitat Vincent Borrelli, Saïd Jabrane, Francis Lazarus, and Boris Thibert, Isometric embeddings of the square flat torus in ambient space, Ensaios Matemáticos 24 (2013), 1–91.MathSciNetMATH Vincent Borrelli, Saïd Jabrane, Francis Lazarus, and Boris Thibert, Isometric embeddings of the square flat torus in ambient space, Ensaios Matemáticos 24 (2013), 1–91.MathSciNetMATH
6.
Zurück zum Zitat Werner Boy, Über die curvatura integra und die topologie geschlossener flächen, Mathematische Annalen 57 (1903), no. 2, 151–184.MathSciNetCrossRefMATH Werner Boy, Über die curvatura integra und die topologie geschlossener flächen, Mathematische Annalen 57 (1903), no. 2, 151–184.MathSciNetCrossRefMATH
7.
Zurück zum Zitat Stephan E. Cohn-Vossen, Die verbiegung von flachen im grossen, Fortschr. Math. Wiss 1 (1936), 33–76. Stephan E. Cohn-Vossen, Die verbiegung von flachen im grossen, Fortschr. Math. Wiss 1 (1936), 33–76.
8.
Zurück zum Zitat Sergio Conti, Camillo De Lellis, and László Székelyhidi Jr, h-principle and rigidity for \({C}^{1,\alpha }\) isometric embeddings, Nonlinear partial differential equations, Abel Symposia, vol. 7, Springer, 2012, pp. 83–116. Sergio Conti, Camillo De Lellis, and László Székelyhidi Jr, h-principle and rigidity for \({C}^{1,\alpha }\) isometric embeddings, Nonlinear partial differential equations, Abel Symposia, vol. 7, Springer, 2012, pp. 83–116.
9.
Zurück zum Zitat Yakov Eliashberg and Nikolai Mishachev, Introduction to the \(h\)-principle, Graduate Studies in Mathematics, vol. 48, A.M.S., Providence, 2002.MATH Yakov Eliashberg and Nikolai Mishachev, Introduction to the \(h\)-principle, Graduate Studies in Mathematics, vol. 48, A.M.S., Providence, 2002.MATH
10.
Zurück zum Zitat George Francis and John M. Sullivan, Visualizing a Sphere Eversion, IEEE Trans. Vis. and Comp. Graphics 10 (2004), no. 5, 509–515.CrossRef George Francis and John M. Sullivan, Visualizing a Sphere Eversion, IEEE Trans. Vis. and Comp. Graphics 10 (2004), no. 5, 509–515.CrossRef
11.
Zurück zum Zitat Mikhail Gromov, Partial differential relations, Springer-Verlag, 1986. Mikhail Gromov, Partial differential relations, Springer-Verlag, 1986.
12.
Zurück zum Zitat Noel J. Hicks, Notes on differential geometry, Math. Studies, Van Nostrand Reinhold, Princeton, NJ, 1965.MATH Noel J. Hicks, Notes on differential geometry, Math. Studies, Van Nostrand Reinhold, Princeton, NJ, 1965.MATH
13.
15.
Zurück zum Zitat Silvio Levy, Making waves. A guide to the ideas behind outside in, AK Peters, Wellesley, MA, 1995.MATH Silvio Levy, Making waves. A guide to the ideas behind outside in, AK Peters, Wellesley, MA, 1995.MATH
16.
Zurück zum Zitat Benoit B Mandelbrot, The fractal geometry of nature, vol. 173, Macmillan, 1983. Benoit B Mandelbrot, The fractal geometry of nature, vol. 173, Macmillan, 1983.
17.
Zurück zum Zitat David Mumford, Caroline Series, and David Wright, Indra’s pearls: the vision of felix klein, Cambridge University Press, 2002. David Mumford, Caroline Series, and David Wright, Indra’s pearls: the vision of felix klein, Cambridge University Press, 2002.
19.
Zurück zum Zitat David Spring, Convex integration theory, Monographs in Mathematics, vol. 92, Birkhäuser Verlag, 1998. David Spring, Convex integration theory, Monographs in Mathematics, vol. 92, Birkhäuser Verlag, 1998.
Metadaten
Titel
An Explicit Isometric Reduction of the Unit Sphere into an Arbitrarily Small Ball
verfasst von
Evangelis Bartzos
Vincent Borrelli
Roland Denis
Francis Lazarus
Damien Rohmer
Boris Thibert
Publikationsdatum
05.07.2017
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 4/2018
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-017-9360-1