Skip to main content
Erschienen in:

01.04.2011 | Original Paper

An extended graphical targeting technique for direct reuse/recycle in concentration and property-based resource conservation networks

verfasst von: Shin Yin Saw, Liangming Lee, Ming Hann Lim, Dominic Chwan Yee Foo, Irene Mei Leng Chew, Raymond R. Tan, Jiří Jaromír Klemeš

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 2/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Minimum flowrate targeting methods for resource conservation networks (RCNs) have been developed over the last decades. The existing methodologies still have certain drawbacks. Their design insights could be deepened and some steps should be more convenient for the users. A targeting tool called the material surplus composite curve (MSCC), which is an improvement of the surplus diagram for water and hydrogen networks is introduced. The approach is illustrated on several cases selected from the literature. Using this technique, it is possible to determine rigorous flowrate targets for different variants of the RCN problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agrawal V, Shenoy UV (2006) Unified conceptual approach to targeting and design of water and hydrogen networks. AIChE J 52(3):1071–1081CrossRef Agrawal V, Shenoy UV (2006) Unified conceptual approach to targeting and design of water and hydrogen networks. AIChE J 52(3):1071–1081CrossRef
Zurück zum Zitat Almutlaq AM, El-Halwagi MM (2007) An algebraic targeting approach to resource conservation via material recycle/reuse. Int J Environ Pollut 29(1/2/3):4–18CrossRef Almutlaq AM, El-Halwagi MM (2007) An algebraic targeting approach to resource conservation via material recycle/reuse. Int J Environ Pollut 29(1/2/3):4–18CrossRef
Zurück zum Zitat Almutlaq AM, Kazantzi V, El-Halwagi MM (2005) An algebraic approach to targeting waste discharge and impure fresh usage via material recycle/reuse networks. Clean Technol Environ Policy 7(4):294–305CrossRef Almutlaq AM, Kazantzi V, El-Halwagi MM (2005) An algebraic approach to targeting waste discharge and impure fresh usage via material recycle/reuse networks. Clean Technol Environ Policy 7(4):294–305CrossRef
Zurück zum Zitat Alves JJ, Towler GP (2002) Analysis of refinery hydrogen distribution systems. Ind Eng Chem Res 41(23):5759–5769CrossRef Alves JJ, Towler GP (2002) Analysis of refinery hydrogen distribution systems. Ind Eng Chem Res 41(23):5759–5769CrossRef
Zurück zum Zitat Bagajewicz M (2000) A review of recent design procedures for water networks in refineries and process plants. Comput Chem Eng 24(9–10):2093–2113CrossRef Bagajewicz M (2000) A review of recent design procedures for water networks in refineries and process plants. Comput Chem Eng 24(9–10):2093–2113CrossRef
Zurück zum Zitat Bai J, Feng X, Deng C (2007) Graphical based optimization of single-contaminant regeneration reuse water systems. Chem Eng Res Des 85(A8):1178–1187CrossRef Bai J, Feng X, Deng C (2007) Graphical based optimization of single-contaminant regeneration reuse water systems. Chem Eng Res Des 85(A8):1178–1187CrossRef
Zurück zum Zitat Bandyopadhyay S (2006) Source composite curve for waste reduction. Chem Eng J 125(2):99–110CrossRef Bandyopadhyay S (2006) Source composite curve for waste reduction. Chem Eng J 125(2):99–110CrossRef
Zurück zum Zitat Bandyopadhyay S, Cormos C-C (2008) Water management in process industries incorporating regeneration and recycle through a single treatment unit. Ind Eng Chem Res 47(4):1111–1119CrossRef Bandyopadhyay S, Cormos C-C (2008) Water management in process industries incorporating regeneration and recycle through a single treatment unit. Ind Eng Chem Res 47(4):1111–1119CrossRef
Zurück zum Zitat Bandyopadhyay S, Ghanekar MD, Pillai HK (2006) Process water management. Ind Eng Chem Res 45(15):5287–5297CrossRef Bandyopadhyay S, Ghanekar MD, Pillai HK (2006) Process water management. Ind Eng Chem Res 45(15):5287–5297CrossRef
Zurück zum Zitat Dhole VR, Ramchandani N, Tainsh RA, Wasilewski M (1996) Make your process water pay for itself. Chem Eng 103:100–103 Dhole VR, Ramchandani N, Tainsh RA, Wasilewski M (1996) Make your process water pay for itself. Chem Eng 103:100–103
Zurück zum Zitat Dunn RF, Wenzel H (2001) Process integration design methods for water conservation and wastewater reduction in industry. Part 1. Design for single contaminant. Clean Prod Process 3:307–318 Dunn RF, Wenzel H (2001) Process integration design methods for water conservation and wastewater reduction in industry. Part 1. Design for single contaminant. Clean Prod Process 3:307–318
Zurück zum Zitat El-Halwagi MM (1997) Pollution prevention through process integration: systematic design tools. Academic Press, San Diego El-Halwagi MM (1997) Pollution prevention through process integration: systematic design tools. Academic Press, San Diego
Zurück zum Zitat El-Halwagi MM (2006) Process integration. Elsevier, Amsterdam El-Halwagi MM (2006) Process integration. Elsevier, Amsterdam
Zurück zum Zitat El-Halwagi MM, Manousiothakis V (1989) Synthesis of mass-exchange networks. AIChE J 35(8):1233–1244CrossRef El-Halwagi MM, Manousiothakis V (1989) Synthesis of mass-exchange networks. AIChE J 35(8):1233–1244CrossRef
Zurück zum Zitat El-Halwagi MM, Gabriel F, Harell D (2003) Rigorous graphical targeting for resource conservation via material recycle/reuse networks. Ind Eng Chem Res 42(19):4319–4328CrossRef El-Halwagi MM, Gabriel F, Harell D (2003) Rigorous graphical targeting for resource conservation via material recycle/reuse networks. Ind Eng Chem Res 42(19):4319–4328CrossRef
Zurück zum Zitat Feng X, Bai J, Zheng X (2007) On the use of graphical method to determine the targets of single-contaminant regeneration recycling water systems. Chem Eng Sci 62:2127–2138CrossRef Feng X, Bai J, Zheng X (2007) On the use of graphical method to determine the targets of single-contaminant regeneration recycling water systems. Chem Eng Sci 62:2127–2138CrossRef
Zurück zum Zitat Foo DCY (2007) Water cascade analysis for single and multiple impure fresh water feed. Chem Eng Res Des 85(8):1169–1177CrossRef Foo DCY (2007) Water cascade analysis for single and multiple impure fresh water feed. Chem Eng Res Des 85(8):1169–1177CrossRef
Zurück zum Zitat Foo DCY (2008) Flowrate targeting for threshold problems and plant-wide integration for water network synthesis. J Environ Manag 88(2):253–274CrossRef Foo DCY (2008) Flowrate targeting for threshold problems and plant-wide integration for water network synthesis. J Environ Manag 88(2):253–274CrossRef
Zurück zum Zitat Foo DCY (2009) State-of-the-art review of pinch analysis techniques for water network synthesis. Ind Eng Chem Res 48(11):5125–5159CrossRef Foo DCY (2009) State-of-the-art review of pinch analysis techniques for water network synthesis. Ind Eng Chem Res 48(11):5125–5159CrossRef
Zurück zum Zitat Foo DCY, Manan ZA (2006) Setting the minimum utility gas flowrate targets using cascade analysis technique. Ind Eng Chem Res 45(17):5986–5995CrossRef Foo DCY, Manan ZA (2006) Setting the minimum utility gas flowrate targets using cascade analysis technique. Ind Eng Chem Res 45(17):5986–5995CrossRef
Zurück zum Zitat Foo DCY, Manan ZA, Tan YL (2006a) Use cascade analysis to optimize water networks. Chem Eng Progr 102(7):45–52 Foo DCY, Manan ZA, Tan YL (2006a) Use cascade analysis to optimize water networks. Chem Eng Progr 102(7):45–52
Zurück zum Zitat Foo DCY, Kazantzi V, El-Halwagi MM, Manan ZA (2006b) Surplus diagram and cascade analysis technique for targeting property-based material reuse network. Chem Eng Sci 61(8):2626–2642CrossRef Foo DCY, Kazantzi V, El-Halwagi MM, Manan ZA (2006b) Surplus diagram and cascade analysis technique for targeting property-based material reuse network. Chem Eng Sci 61(8):2626–2642CrossRef
Zurück zum Zitat Hallale N (2002) A new graphical targeting method for water minimisation. Adv Environ Res 6(3):377–390CrossRef Hallale N (2002) A new graphical targeting method for water minimisation. Adv Environ Res 6(3):377–390CrossRef
Zurück zum Zitat Hohmann EC (1971) Optimum networks for heat exchange. PhD thesis, Chemical Engineering Department, University of Southern California, Los Angeles Hohmann EC (1971) Optimum networks for heat exchange. PhD thesis, Chemical Engineering Department, University of Southern California, Los Angeles
Zurück zum Zitat Jacob J, Kaipe H, Couderc F, Paris J (2002) Water network analysis in pulp and paper processes by pinch and linear programming techniques. Chem Eng Commun 189(2):184–206CrossRef Jacob J, Kaipe H, Couderc F, Paris J (2002) Water network analysis in pulp and paper processes by pinch and linear programming techniques. Chem Eng Commun 189(2):184–206CrossRef
Zurück zum Zitat Kazantzi V, El-Halwagi MM (2005) Targeting material reuse via property integration. Chem Eng Progr 101(8):28–37 Kazantzi V, El-Halwagi MM (2005) Targeting material reuse via property integration. Chem Eng Progr 101(8):28–37
Zurück zum Zitat Klemeš J, Dhole VR, Raissi K, Perry SJ, Puigjaner L (1997) Targeting and design methodology for reduction of fuel, power and CO2 on total sites. Appl Therm Eng 17:993–1003CrossRef Klemeš J, Dhole VR, Raissi K, Perry SJ, Puigjaner L (1997) Targeting and design methodology for reduction of fuel, power and CO2 on total sites. Appl Therm Eng 17:993–1003CrossRef
Zurück zum Zitat Kuo WCJ, Smith R (1998a) Design of water-using systems involving regeneration. Process Saf Environ Prot 76(2):94–114CrossRef Kuo WCJ, Smith R (1998a) Design of water-using systems involving regeneration. Process Saf Environ Prot 76(2):94–114CrossRef
Zurück zum Zitat Kuo WCJ, Smith R (1998b) Designing for the interactions between water-use and effluent treatment. Chem Eng Res Des 76(3):287–301CrossRef Kuo WCJ, Smith R (1998b) Designing for the interactions between water-use and effluent treatment. Chem Eng Res Des 76(3):287–301CrossRef
Zurück zum Zitat Linnhoff B, Flower JR (1978) Synthesis of heat exchanger networks. AIChE J 24:633–642CrossRef Linnhoff B, Flower JR (1978) Synthesis of heat exchanger networks. AIChE J 24:633–642CrossRef
Zurück zum Zitat Linnhoff B, Townsend DW, Boland D, Hewitt GF, Thomas BEA, Guy AR, Marshall RH (1982/1994) A user guide on process integration for the efficient use of energy. IChemE, Rugby Linnhoff B, Townsend DW, Boland D, Hewitt GF, Thomas BEA, Guy AR, Marshall RH (1982/1994) A user guide on process integration for the efficient use of energy. IChemE, Rugby
Zurück zum Zitat Manan ZA, Tan YL, Foo DCY (2004) Targeting the minimum water flowrate using water cascade analysis technique. AIChE J 50(12):3169–3183CrossRef Manan ZA, Tan YL, Foo DCY (2004) Targeting the minimum water flowrate using water cascade analysis technique. AIChE J 50(12):3169–3183CrossRef
Zurück zum Zitat Ng DKS, Foo DCY, Tan RR, Tan YL (2007a) Ultimate flowrate targeting with regeneration placement. Chem Eng Res Des 85(9):1253–1267CrossRef Ng DKS, Foo DCY, Tan RR, Tan YL (2007a) Ultimate flowrate targeting with regeneration placement. Chem Eng Res Des 85(9):1253–1267CrossRef
Zurück zum Zitat Ng DKS, Foo DCY, Tan RR (2007b) Targeting for total water network. 1. Waste stream identification. Ind Eng Chem Res 46(26):9107–9113CrossRef Ng DKS, Foo DCY, Tan RR (2007b) Targeting for total water network. 1. Waste stream identification. Ind Eng Chem Res 46(26):9107–9113CrossRef
Zurück zum Zitat Ng DKS, Foo DCY, Tan RR (2007c) Targeting for total water network. 2. Waste treatment targeting and interactions with water system elements. Ind Eng Chem Res 46(26):9114–9125CrossRef Ng DKS, Foo DCY, Tan RR (2007c) Targeting for total water network. 2. Waste treatment targeting and interactions with water system elements. Ind Eng Chem Res 46(26):9114–9125CrossRef
Zurück zum Zitat Ng DKS, Foo DCY, Tan RR (2008) Extension of targeting procedure for ‘Ultimate flowrate targeting with regeneration placement’ by Ng et al Chem. Eng. Res. Des. 85(A9):1253–1267. Chem Eng Res Des 86(10):1182–1186CrossRef Ng DKS, Foo DCY, Tan RR (2008) Extension of targeting procedure for ‘Ultimate flowrate targeting with regeneration placement’ by Ng et al Chem. Eng. Res. Des. 85(A9):1253–1267. Chem Eng Res Des 86(10):1182–1186CrossRef
Zurück zum Zitat Ng DKS, Foo DCY, Tan RR (2009a) Automated targeting technique for single-component resource conservation networks. Part 1: direct reuse/recycle. Ind Eng Chem Res 48(16):7637–7646CrossRef Ng DKS, Foo DCY, Tan RR (2009a) Automated targeting technique for single-component resource conservation networks. Part 1: direct reuse/recycle. Ind Eng Chem Res 48(16):7637–7646CrossRef
Zurück zum Zitat Ng DKS, Foo DCY, Tan RR (2009b) Automated targeting technique for single-component resource conservation networks. Part 2: single-pass and partitioning waste-interception systems. Ind Eng Chem Res 48(16):7647–7661CrossRef Ng DKS, Foo DCY, Tan RR (2009b) Automated targeting technique for single-component resource conservation networks. Part 2: single-pass and partitioning waste-interception systems. Ind Eng Chem Res 48(16):7647–7661CrossRef
Zurück zum Zitat Ng DKS, Foo DCY, Tan RR, Pau CH, Tan YL (2009c) Automated targeting for conventional and bilateral property-based resource conservation network. Chem Eng J 149:87–101CrossRef Ng DKS, Foo DCY, Tan RR, Pau CH, Tan YL (2009c) Automated targeting for conventional and bilateral property-based resource conservation network. Chem Eng J 149:87–101CrossRef
Zurück zum Zitat Ng DKS, Foo DCY, Tan RR, El-Halwagi MM (2010) Automated targeting technique for concentration and property-based total resource conservation network. Comput Chem Eng 34(5):825–845CrossRef Ng DKS, Foo DCY, Tan RR, El-Halwagi MM (2010) Automated targeting technique for concentration and property-based total resource conservation network. Comput Chem Eng 34(5):825–845CrossRef
Zurück zum Zitat Polley GT, Polley HL (2000) Design better water networks. Chem Eng Progr 96(2):47–52 Polley GT, Polley HL (2000) Design better water networks. Chem Eng Progr 96(2):47–52
Zurück zum Zitat Prakash R, Shenoy UV (2005) Targeting and design of water networks for fixed flowrate and fixed contaminant load operations. Chem Eng Sci 60(1):255–268CrossRef Prakash R, Shenoy UV (2005) Targeting and design of water networks for fixed flowrate and fixed contaminant load operations. Chem Eng Sci 60(1):255–268CrossRef
Zurück zum Zitat Rockstrom J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Niykvist B, De Wit CA, Hughes T, Van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Constanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475CrossRef Rockstrom J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Niykvist B, De Wit CA, Hughes T, Van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Constanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475CrossRef
Zurück zum Zitat Rosegrant MW, Cai X, Cline SA (2002) Global water outlook to 2025—averting an impending crisis. International Food Policy Research Institute and International Water Management Institute, Washington Rosegrant MW, Cai X, Cline SA (2002) Global water outlook to 2025—averting an impending crisis. International Food Policy Research Institute and International Water Management Institute, Washington
Zurück zum Zitat Smith R (1995) Chemical process design. McGraw-Hill, New York Smith R (1995) Chemical process design. McGraw-Hill, New York
Zurück zum Zitat Smith R (2005) Chemical process design and integration. Wiley, New York Smith R (2005) Chemical process design and integration. Wiley, New York
Zurück zum Zitat Sorin M, Bédard S (1999) The global pinch point in water reuse networks. Process Saf Environ Prot 77(5):305–308CrossRef Sorin M, Bédard S (1999) The global pinch point in water reuse networks. Process Saf Environ Prot 77(5):305–308CrossRef
Zurück zum Zitat Tan RR, Ng DKS, Foo DCY (2010) Graphical approach to minimum flowrate targeting for partitioning water pretreatment units. Chem Eng Res Des 88:393–402CrossRef Tan RR, Ng DKS, Foo DCY (2010) Graphical approach to minimum flowrate targeting for partitioning water pretreatment units. Chem Eng Res Des 88:393–402CrossRef
Zurück zum Zitat Wang YP, Smith R (1994a) Wastewater minimisation. Chem Eng Sci 49(7):981–1006CrossRef Wang YP, Smith R (1994a) Wastewater minimisation. Chem Eng Sci 49(7):981–1006CrossRef
Zurück zum Zitat Wang YP, Smith R (1994b) Design of distributed effluent treatment systems. Chem Eng Sci 49(18):3127–3145CrossRef Wang YP, Smith R (1994b) Design of distributed effluent treatment systems. Chem Eng Sci 49(18):3127–3145CrossRef
Zurück zum Zitat Wang YP, Smith R (1995) Wastewater minimization with flowrate constraints. Chem Eng Res Des 73:889–904 Wang YP, Smith R (1995) Wastewater minimization with flowrate constraints. Chem Eng Res Des 73:889–904
Metadaten
Titel
An extended graphical targeting technique for direct reuse/recycle in concentration and property-based resource conservation networks
verfasst von
Shin Yin Saw
Liangming Lee
Ming Hann Lim
Dominic Chwan Yee Foo
Irene Mei Leng Chew
Raymond R. Tan
Jiří Jaromír Klemeš
Publikationsdatum
01.04.2011
Verlag
Springer-Verlag
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 2/2011
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-010-0305-5

Weitere Artikel der Ausgabe 2/2011

Clean Technologies and Environmental Policy 2/2011 Zur Ausgabe