Skip to main content

2020 | OriginalPaper | Buchkapitel

An Extensive Survey on Recent Machine Learning Algorithms for Diabetes Mellitus Prediction

verfasst von : R. Thanga Selvi, I. Muthulakshmi

Erschienen in: Intelligent Communication Technologies and Virtual Mobile Networks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Presently, the number of people affected by Diabetes Mellitus (DM) is significantly increased because of the presence of high blood sugar level because of the failure of pancreas to generate enough insulin. DM is one of the chronic diseases and is widely spread all over the word. In recent days, there is an exponential growth in the number of researches carried out in this field because of the DM leads to death causing disease like heart stroke, eye blindness, etc. So, the prediction of DM at the earlier stage is highly useful to prevent the increasing mortality rate. Numerous data mining and machine learning (ML) models has been developed to diagnose, and handle DM. Keeping this in mind, in this paper, we try to review the recently developed ML and data mining models to predict DM. The existing DM prediction techniques in different aspects have been reviewed and a detailed comparison is also made at the end of the survey.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Patil, B.M., Joshi, R.C., Toshniwal, D.: Association rule for classification of type-2 diabetic patients. In: Proceedings of the Second International Conference on Machine Learning and Computing, pp 330–334 (2010) Patil, B.M., Joshi, R.C., Toshniwal, D.: Association rule for classification of type-2 diabetic patients. In: Proceedings of the Second International Conference on Machine Learning and Computing, pp 330–334 (2010)
3.
Zurück zum Zitat Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn., vol. 2, no. 6, pp. 251–261, June 2012CrossRef Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn., vol. 2, no. 6, pp. 251–261, June 2012CrossRef
4.
Zurück zum Zitat Papagcoriou, E., Kotsioni, I., Lions, A.: Data mining: a new technique in medical research. Hormones 4(2), 114–118 (2013) Papagcoriou, E., Kotsioni, I., Lions, A.: Data mining: a new technique in medical research. Hormones 4(2), 114–118 (2013)
5.
Zurück zum Zitat Patil, B.M., Joshi, R.C., Toshniwal, D.: Association rule for classification of type-2 diabetic patients. In: Proceedings of the Second International Conference on Machine Learning and Computing, vol.7, no.4, pp.140–166, March 2009 Patil, B.M., Joshi, R.C., Toshniwal, D.: Association rule for classification of type-2 diabetic patients. In: Proceedings of the Second International Conference on Machine Learning and Computing, vol.7, no.4, pp.140–166, March 2009
6.
Zurück zum Zitat Farran, B., Channanath, A.M., Behbehani, K., Thanaraj, T.A.: Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: machine-learning algorithms and validation using national health data from Kuwait—a cohort study. BMJ Open 3(5), e002457 (2013)CrossRef Farran, B., Channanath, A.M., Behbehani, K., Thanaraj, T.A.: Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: machine-learning algorithms and validation using national health data from Kuwait—a cohort study. BMJ Open 3(5), e002457 (2013)CrossRef
7.
Zurück zum Zitat Sisodia, D., Sisodia, D.S.: Prediction of diabetes using classification algorithms. Procedia Comput. Sci. 132, 1578–1585 (2018)CrossRef Sisodia, D., Sisodia, D.S.: Prediction of diabetes using classification algorithms. Procedia Comput. Sci. 132, 1578–1585 (2018)CrossRef
8.
Zurück zum Zitat Wu, H., Yang, S., Huang, Z., He, J., Wang, X.: Type 2 diabetes mellitus prediction model based on data mining. Inform. Med. Unlocked 10, 100–107 (2018)CrossRef Wu, H., Yang, S., Huang, Z., He, J., Wang, X.: Type 2 diabetes mellitus prediction model based on data mining. Inform. Med. Unlocked 10, 100–107 (2018)CrossRef
9.
Zurück zum Zitat Saxena, K., Sharma, R.: Diabetes mellitus prediction system evaluation using c4. 5 rules and partial tree. In: 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), pp. 1–6. IEEE, September 2015 Saxena, K., Sharma, R.: Diabetes mellitus prediction system evaluation using c4. 5 rules and partial tree. In: 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), pp. 1–6. IEEE, September 2015
10.
Zurück zum Zitat Kalaiselvi, C., Nasira, G.M.: Prediction of heart diseases and cancer in diabetic patients using data mining techniques. Indian J. Sci. Technol. 8(14), 1 (2015)CrossRef Kalaiselvi, C., Nasira, G.M.: Prediction of heart diseases and cancer in diabetic patients using data mining techniques. Indian J. Sci. Technol. 8(14), 1 (2015)CrossRef
11.
Zurück zum Zitat Karthikeyan, T., Vembandasamy, K.: A novel algorithm to diagnosis type II diabetes mellitus based on association rule mining using MPSO-LSSVM with outlier detection method. Indian J. Sci. Technol. 8(S8), 310–320 (2015)CrossRef Karthikeyan, T., Vembandasamy, K.: A novel algorithm to diagnosis type II diabetes mellitus based on association rule mining using MPSO-LSSVM with outlier detection method. Indian J. Sci. Technol. 8(S8), 310–320 (2015)CrossRef
12.
Zurück zum Zitat Lukmanto, R.B., Irwansyah, E.: The early detection of Diabetes Mellitus (DM) using fuzzy hierarchical model. Procedia Comput. Sci. 59, 312–319 (2015)CrossRef Lukmanto, R.B., Irwansyah, E.: The early detection of Diabetes Mellitus (DM) using fuzzy hierarchical model. Procedia Comput. Sci. 59, 312–319 (2015)CrossRef
13.
Zurück zum Zitat Aljumah, A.A., Ahamad, M.G., Siddiqui, M.K.: Application of data mining: diabetes health care in young and old patients. J. King Saud Univ.-Comput. Inf. Sci. 25(2), 127–136 (2013) Aljumah, A.A., Ahamad, M.G., Siddiqui, M.K.: Application of data mining: diabetes health care in young and old patients. J. King Saud Univ.-Comput. Inf. Sci. 25(2), 127–136 (2013)
14.
Zurück zum Zitat Chen, W., Chen, S., Zhang, H., Wu, T.: A hybrid prediction model for type 2 diabetes using K-means and decision tree. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 386–390. IEEE, November 2017 Chen, W., Chen, S., Zhang, H., Wu, T.: A hybrid prediction model for type 2 diabetes using K-means and decision tree. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 386–390. IEEE, November 2017
15.
Zurück zum Zitat Varma, K.V., Rao, A.A., Lakshmi, T.S.M., Rao, P.N.: A computational intelligence approach for a better diagnosis of diabetic patients. Comput. Electr. Eng. 40(5), 1758–1765 (2014)CrossRef Varma, K.V., Rao, A.A., Lakshmi, T.S.M., Rao, P.N.: A computational intelligence approach for a better diagnosis of diabetic patients. Comput. Electr. Eng. 40(5), 1758–1765 (2014)CrossRef
16.
Zurück zum Zitat Pavate, A., Ansari, N.: Risk prediction of disease complications in type 2 diabetes patients using soft computing techniques. In: 2015 Fifth International Conference on Advances in Computing and Communications (ICACC), pp. 371–375. IEEE, September 2015 Pavate, A., Ansari, N.: Risk prediction of disease complications in type 2 diabetes patients using soft computing techniques. In: 2015 Fifth International Conference on Advances in Computing and Communications (ICACC), pp. 371–375. IEEE, September 2015
17.
Zurück zum Zitat Mekruksavanich, S.: Medical expert system based ontology for diabetes disease diagnosis. In: 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 383–389. IEEE, August 2016 Mekruksavanich, S.: Medical expert system based ontology for diabetes disease diagnosis. In: 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 383–389. IEEE, August 2016
18.
Zurück zum Zitat Guo, Y., Bai, G., Hu, Y.: Using bayes network for prediction of type-2 diabetes. In: 2012 International Conference for Internet Technology and Secured Transactions, pp. 471–472. IEEE, December 2012 Guo, Y., Bai, G., Hu, Y.: Using bayes network for prediction of type-2 diabetes. In: 2012 International Conference for Internet Technology and Secured Transactions, pp. 471–472. IEEE, December 2012
19.
Zurück zum Zitat Al Jarullah, A.A.: Decision tree discovery for the diagnosis of type II diabetes. In: 2011 International Conference on Innovations in Information Technology (IIT), pp. 303–307. IEEE, April 2011 Al Jarullah, A.A.: Decision tree discovery for the diagnosis of type II diabetes. In: 2011 International Conference on Innovations in Information Technology (IIT), pp. 303–307. IEEE, April 2011
Metadaten
Titel
An Extensive Survey on Recent Machine Learning Algorithms for Diabetes Mellitus Prediction
verfasst von
R. Thanga Selvi
I. Muthulakshmi
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-28364-3_31