Skip to main content
Erschienen in: Journal of Scientific Computing 3/2017

26.08.2016

An Extrapolation Cascadic Multigrid Method Combined with a Fourth-Order Compact Scheme for 3D Poisson Equation

verfasst von: Kejia Pan, Dongdong He, Hongling Hu

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Extrapolation cascadic multigrid (EXCMG) method is an efficient multigrid method which has mainly been used for solving the two-dimensional elliptic boundary value problems with linear finite element discretization in the existing literature. In this paper, we develop an EXCMG method to solve the three-dimensional Poisson equation on rectangular domains by using the compact finite difference (FD) method with unequal meshsizes in different coordinate directions. The resulting linear system from compact FD discretization is solved by the conjugate gradient (CG) method with a relative residual stopping criterion. By combining the Richardson extrapolation and tri-quartic Lagrange interpolation for the numerical solutions from two-level of grids (current and previous grids), we are able to produce an extremely accurate approximation of the actual numerical solution on the next finer grid, which can greatly reduce the number of relaxation sweeps needed. Additionally, a simple method based on the midpoint extrapolation formula is used for the fourth-order FD solutions on two-level of grids to achieve sixth-order accuracy on the entire fine grid cheaply and directly. The gradient of the numerical solution can also be easily obtained through solving a series of tridiagonal linear systems resulting from the fourth-order compact FD discretizations. Numerical results show that our EXCMG method is much more efficient than the classical V-cycle and W-cycle multigrid methods. Moreover, only few CG iterations are required on the finest grid to achieve full fourth-order accuracy in both the \(L^2\)-norm and \(L^{\infty }\)-norm for the solution and its gradient when the exact solution belongs to \(C^6\). Finally, numerical result shows that our EXCMG method is still effective when the exact solution has a lower regularity, which widens the scope of applicability of our EXCMG method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. Chapman & Hall, London (1989)MATH Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. Chapman & Hall, London (1989)MATH
3.
Zurück zum Zitat Gupta, M.M., Kouatchou, J.: Symbolic derivation of finite difference approximations for the three-dimensional Poisson equation. Numer. Methods Part. Differ. Equ. 14, 593–606 (1998)MathSciNetCrossRefMATH Gupta, M.M., Kouatchou, J.: Symbolic derivation of finite difference approximations for the three-dimensional Poisson equation. Numer. Methods Part. Differ. Equ. 14, 593–606 (1998)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Spotz, W.F., Carey, G.F.: A high-order compact formulation for the 3D poisson equation. Numer. Methods Part. Differ. Equ. 12, 235–243 (1996)CrossRefMATH Spotz, W.F., Carey, G.F.: A high-order compact formulation for the 3D poisson equation. Numer. Methods Part. Differ. Equ. 12, 235–243 (1996)CrossRefMATH
5.
Zurück zum Zitat Sutmann, G., Steffen, B.: High-order compact solvers for the three-dimensional Poisson equation. J. Comput. Appl. Math. 187, 142–170 (2006)MathSciNetCrossRefMATH Sutmann, G., Steffen, B.: High-order compact solvers for the three-dimensional Poisson equation. J. Comput. Appl. Math. 187, 142–170 (2006)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Wang, J., Zhong, W., Zhang, J.: A general meshsize fourth-order compact difference discretization scheme for 3D Poisson equation. Appl. Math. Comput. 183, 804–812 (2006)MathSciNetMATH Wang, J., Zhong, W., Zhang, J.: A general meshsize fourth-order compact difference discretization scheme for 3D Poisson equation. Appl. Math. Comput. 183, 804–812 (2006)MathSciNetMATH
7.
Zurück zum Zitat Gupta, M.M., Kouatchou, J., Zhang, J.: Comparison of second-order and fourth-order discretization for multigrid Poisson solvers. J. Comput. Phys. 132, 226–232 (1997)MathSciNetCrossRefMATH Gupta, M.M., Kouatchou, J., Zhang, J.: Comparison of second-order and fourth-order discretization for multigrid Poisson solvers. J. Comput. Phys. 132, 226–232 (1997)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Zhang, J.: Multigrid method and fourth-order compact scheme for 2D Poisson equation with unequal mesh-size discretization. J. Comput. Phys. 179, 170–179 (2002)CrossRefMATH Zhang, J.: Multigrid method and fourth-order compact scheme for 2D Poisson equation with unequal mesh-size discretization. J. Comput. Phys. 179, 170–179 (2002)CrossRefMATH
11.
Zurück zum Zitat Wang, Y., Zhang, J.: Sixth-order compact scheme combined with multigrid method and extrapolation technique for 2D poisson equation. J. Comput. Phys. 228, 137–146 (2009)MathSciNetCrossRefMATH Wang, Y., Zhang, J.: Sixth-order compact scheme combined with multigrid method and extrapolation technique for 2D poisson equation. J. Comput. Phys. 228, 137–146 (2009)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Zhang, J.: Fast and high accuracy multigrid solution of the three dimensional Poisson equation. J. Comput. Phys. 143, 449–161 (1998)MathSciNetCrossRefMATH Zhang, J.: Fast and high accuracy multigrid solution of the three dimensional Poisson equation. J. Comput. Phys. 143, 449–161 (1998)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Ge, Y.B.: Multigrid method and fourth-order compact difference discretization scheme with unequal meshsizes for 3D poisson equation. J. Comput. Phys. 229, 6381–6391 (2010)MathSciNetCrossRefMATH Ge, Y.B.: Multigrid method and fourth-order compact difference discretization scheme with unequal meshsizes for 3D poisson equation. J. Comput. Phys. 229, 6381–6391 (2010)MathSciNetCrossRefMATH
14.
Zurück zum Zitat McCormick, S.F. (ed.): Multigrid Methods. Frontiers in Applied Mathematics. SIAM, Philadelphia (1987) McCormick, S.F. (ed.): Multigrid Methods. Frontiers in Applied Mathematics. SIAM, Philadelphia (1987)
15.
Zurück zum Zitat Briggs, W.L., McCormick, S.F., Henson, V.E.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000)CrossRefMATH Briggs, W.L., McCormick, S.F., Henson, V.E.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000)CrossRefMATH
16.
Zurück zum Zitat Trottenberg, U., Oosterlee, C.W., Schller, A.: Multigrid. Academic Press, London (2001) Trottenberg, U., Oosterlee, C.W., Schller, A.: Multigrid. Academic Press, London (2001)
17.
Zurück zum Zitat Moghaderi, H., Dehghan, M., Hajarian, M.: A fast and efficient two-grid method for solving d-dimensional Poisson equations. Numer. Algorithms 72, 483–537 (2016)MathSciNetCrossRefMATH Moghaderi, H., Dehghan, M., Hajarian, M.: A fast and efficient two-grid method for solving d-dimensional Poisson equations. Numer. Algorithms 72, 483–537 (2016)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Altas, I., Dym, J., Gupta, M.M., Manohar, R.P.: Multigrid solution of automatically generated high-order discretizations for the biharmonic equation. SIAM J. Sci. Comput. 19, 1575–1585 (1998)MathSciNetCrossRefMATH Altas, I., Dym, J., Gupta, M.M., Manohar, R.P.: Multigrid solution of automatically generated high-order discretizations for the biharmonic equation. SIAM J. Sci. Comput. 19, 1575–1585 (1998)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Zhang, J., Sun, H., Zhao, J.J.: High order compact scheme with multigrid local mesh refinement procedure for convection diffusion problems. Comput. Methods Appl. Mech. Comput. 191, 4661–4674 (2002)MathSciNetCrossRefMATH Zhang, J., Sun, H., Zhao, J.J.: High order compact scheme with multigrid local mesh refinement procedure for convection diffusion problems. Comput. Methods Appl. Mech. Comput. 191, 4661–4674 (2002)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Ge, Y.B., Cao, F.J.: Multigrid method based on the transformation-free HOC scheme on nonuniform grids for 2D convection diffusion problems. J. Comput. Phys. 230, 4051–4070 (2011)MathSciNetCrossRefMATH Ge, Y.B., Cao, F.J.: Multigrid method based on the transformation-free HOC scheme on nonuniform grids for 2D convection diffusion problems. J. Comput. Phys. 230, 4051–4070 (2011)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Wang, Y., Zhang, J.: Fast and robust sixth-order multigrid computation for the three-dimensional convection–diffusion equation. J. Comput. Appl. Math. 234, 3496–3506 (2010)MathSciNetCrossRefMATH Wang, Y., Zhang, J.: Fast and robust sixth-order multigrid computation for the three-dimensional convection–diffusion equation. J. Comput. Appl. Math. 234, 3496–3506 (2010)MathSciNetCrossRefMATH
22.
23.
Zurück zum Zitat Shaidurov, V.: Some estimates of the rate of convergence for the cascadic conjugate-gradient method. Comput. Math. Appl. 31, 161–171 (1996)MathSciNetCrossRefMATH Shaidurov, V.: Some estimates of the rate of convergence for the cascadic conjugate-gradient method. Comput. Math. Appl. 31, 161–171 (1996)MathSciNetCrossRefMATH
24.
25.
26.
Zurück zum Zitat Shaidurov, V., Tobiska, L.: The convergence of the cascadic conjugate- gradient method applied to elliptic problems in domains with re-entrant cor- ners. Math. Comput. 69, 501–520 (2000)CrossRefMATH Shaidurov, V., Tobiska, L.: The convergence of the cascadic conjugate- gradient method applied to elliptic problems in domains with re-entrant cor- ners. Math. Comput. 69, 501–520 (2000)CrossRefMATH
27.
Zurück zum Zitat Shaidurov, V., Timmermann, G.: A cascadic multigrid algorithm for semi-linear indefinite elliptic problems. Computing 64, 349–366 (2000)MathSciNetCrossRefMATH Shaidurov, V., Timmermann, G.: A cascadic multigrid algorithm for semi-linear indefinite elliptic problems. Computing 64, 349–366 (2000)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Shi, Z.C., Xu, X.J.: Cascadic multigrid for parabolic problems. J. Comput. Math. 18, 551–560 (2000)MathSciNetMATH Shi, Z.C., Xu, X.J.: Cascadic multigrid for parabolic problems. J. Comput. Math. 18, 551–560 (2000)MathSciNetMATH
29.
Zurück zum Zitat Braess, D., Deuflhard, P., Lipnikov, K.: A subspace cascadic multigrid method for mortar elements. Computing 69, 205–225 (2002)MathSciNetCrossRefMATH Braess, D., Deuflhard, P., Lipnikov, K.: A subspace cascadic multigrid method for mortar elements. Computing 69, 205–225 (2002)MathSciNetCrossRefMATH
30.
31.
Zurück zum Zitat Zhou, S.Z., Hu, H.X.: On the convergence of a cascadic multigrid method for semilinear elliptic problem. Appl. Math. Comput. 159, 407417 (2004)MathSciNet Zhou, S.Z., Hu, H.X.: On the convergence of a cascadic multigrid method for semilinear elliptic problem. Appl. Math. Comput. 159, 407417 (2004)MathSciNet
32.
33.
Zurück zum Zitat Xu, X.J., Chen, W.B.: Standard and economical cascadic multigrid methods for the mortar finite element methods. Numer. Math. Theory Methods Appl. 2, 180–201 (2009)MathSciNetMATH Xu, X.J., Chen, W.B.: Standard and economical cascadic multigrid methods for the mortar finite element methods. Numer. Math. Theory Methods Appl. 2, 180–201 (2009)MathSciNetMATH
34.
Zurück zum Zitat Yu, H.X., Zeng, J.P.: A cascadic multigrid method for a kind of semilinear elliptic problem. Numer. Algorithms 58, 143–162 (2011)MathSciNetCrossRefMATH Yu, H.X., Zeng, J.P.: A cascadic multigrid method for a kind of semilinear elliptic problem. Numer. Algorithms 58, 143–162 (2011)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Shi, Z.C., Xu, X.J., Huang, Y.Q.: Economical cascadic multigrid method (ECMG). Sci. China Ser. A Math. 50(12), 1765–1780 (2007)MathSciNetCrossRefMATH Shi, Z.C., Xu, X.J., Huang, Y.Q.: Economical cascadic multigrid method (ECMG). Sci. China Ser. A Math. 50(12), 1765–1780 (2007)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Chen, C.M., Hu, H.L., Xie, Z.Q., et al.: Analysis of extrapolation cascadic multigrid method (EXCMG). Sci. China Ser. A-Math. 51, 1349–1360 (2008)MathSciNetCrossRefMATH Chen, C.M., Hu, H.L., Xie, Z.Q., et al.: Analysis of extrapolation cascadic multigrid method (EXCMG). Sci. China Ser. A-Math. 51, 1349–1360 (2008)MathSciNetCrossRefMATH
37.
38.
Zurück zum Zitat Hu, H.L., Chen, C.M., Pan, K.J.: Asymptotic expansions of finite element solutions to Robin problems in \(H^3\) and their application in extrapolation cascadic multigrid method. Sci. China Math. 57, 687–698 (2014)MathSciNetCrossRefMATH Hu, H.L., Chen, C.M., Pan, K.J.: Asymptotic expansions of finite element solutions to Robin problems in \(H^3\) and their application in extrapolation cascadic multigrid method. Sci. China Math. 57, 687–698 (2014)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Hu, H.L., Chen, C.M., Pan, K.J.: Time-extrapolation algorithm (TEA) for linear parabolic problems. J. Comput. Math. 32, 183–194 (2014)MathSciNetCrossRefMATH Hu, H.L., Chen, C.M., Pan, K.J.: Time-extrapolation algorithm (TEA) for linear parabolic problems. J. Comput. Math. 32, 183–194 (2014)MathSciNetCrossRefMATH
40.
Zurück zum Zitat Pan, K.J., Tang, J.T., Hu, H.L., et al.: Extrapolation cascadic multigrid method for 2.5D direct current resistivity modeling (in Chinese), Chinese. J. Geophys. 55, 2769–2778 (2012) Pan, K.J., Tang, J.T., Hu, H.L., et al.: Extrapolation cascadic multigrid method for 2.5D direct current resistivity modeling (in Chinese), Chinese. J. Geophys. 55, 2769–2778 (2012)
41.
Zurück zum Zitat Pan, K.J., Tang, J.T.: 2.5-D and 3-D DC resistivity modelling using an extrapolation cascadic multigrid method. Geophys. J. Int. 197, 1459–1470 (2014)CrossRef Pan, K.J., Tang, J.T.: 2.5-D and 3-D DC resistivity modelling using an extrapolation cascadic multigrid method. Geophys. J. Int. 197, 1459–1470 (2014)CrossRef
42.
Zurück zum Zitat Newman, G.A.: A Review of high-performance computational strategies for modeling and imaging of electromagnetic induction data. Surv. Geophys. 35, 85–100 (2014)CrossRef Newman, G.A.: A Review of high-performance computational strategies for modeling and imaging of electromagnetic induction data. Surv. Geophys. 35, 85–100 (2014)CrossRef
43.
Zurück zum Zitat Berikelashuili, G., Gupta, M.M., Mirianashvili, M.: Convergence of fourth-order compact difference schemes for three-dimensional convection-diffusion equations. SIAM J. Numer. Anal. 45, 443–455 (2007)MathSciNetCrossRefMATH Berikelashuili, G., Gupta, M.M., Mirianashvili, M.: Convergence of fourth-order compact difference schemes for three-dimensional convection-diffusion equations. SIAM J. Numer. Anal. 45, 443–455 (2007)MathSciNetCrossRefMATH
44.
Zurück zum Zitat Pan, K.J., He, D.D., Hu, H.L.: A new extrapolation cascadic multigrid method for 3D elliptic boundary value problems on rectangular domains. arXiv preprint arXiv:1506.02983 (2015) Pan, K.J., He, D.D., Hu, H.L.: A new extrapolation cascadic multigrid method for 3D elliptic boundary value problems on rectangular domains. arXiv preprint arXiv:​1506.​02983 (2015)
45.
Zurück zum Zitat Marchuk, G.I., Shaidurov, V.V.: Difference Methods and Their Extrapolations. Springer, New York (1983)CrossRefMATH Marchuk, G.I., Shaidurov, V.V.: Difference Methods and Their Extrapolations. Springer, New York (1983)CrossRefMATH
46.
Zurück zum Zitat Neittaanmaki, P., Lin, Q.: Acceleration of the convergence in finite-difference method by predictor corrector and splitting extrapolation methods. J. Comput. Math. 5, 181–190 (1987)MathSciNetMATH Neittaanmaki, P., Lin, Q.: Acceleration of the convergence in finite-difference method by predictor corrector and splitting extrapolation methods. J. Comput. Math. 5, 181–190 (1987)MathSciNetMATH
47.
Zurück zum Zitat Fößmeier, R.: On Richardson extrapolation for finite difference methods on regular grids. Numer. Math. 55, 451–462 (1989)MathSciNetCrossRefMATH Fößmeier, R.: On Richardson extrapolation for finite difference methods on regular grids. Numer. Math. 55, 451–462 (1989)MathSciNetCrossRefMATH
48.
Zurück zum Zitat Han, G.Q.: Spline finite difference methods and their extrapolation for singular two-point boundary value problems. J. Comput. Math. 11, 289–296 (1993)MathSciNetMATH Han, G.Q.: Spline finite difference methods and their extrapolation for singular two-point boundary value problems. J. Comput. Math. 11, 289–296 (1993)MathSciNetMATH
49.
Zurück zum Zitat Sun, H., Zhang, J.: A high order finite difference discretization strategy based on extrapolation for convection diffusion equations. Numer. Methods Part. Differ. Equ. 20, 18–32 (2004)MathSciNetCrossRefMATH Sun, H., Zhang, J.: A high order finite difference discretization strategy based on extrapolation for convection diffusion equations. Numer. Methods Part. Differ. Equ. 20, 18–32 (2004)MathSciNetCrossRefMATH
50.
Zurück zum Zitat Rahul, K., Bhattacharyya, S.N.: One-sided finite-difference approximations suitable for use with Richardson extrapolation. J. Comput. Phys. 219, 13–20 (2006)MathSciNetCrossRefMATH Rahul, K., Bhattacharyya, S.N.: One-sided finite-difference approximations suitable for use with Richardson extrapolation. J. Comput. Phys. 219, 13–20 (2006)MathSciNetCrossRefMATH
51.
Zurück zum Zitat Munyakazi, J.B., Patidar, K.C.: On Richardson extrapolation for fitted operator finite difference methods. Appl. Math. Comput. 201, 465–480 (2008)MathSciNetMATH Munyakazi, J.B., Patidar, K.C.: On Richardson extrapolation for fitted operator finite difference methods. Appl. Math. Comput. 201, 465–480 (2008)MathSciNetMATH
52.
Zurück zum Zitat Tam, C.K.W., Kurbatskii, K.A.: A wavenumber based extrapolation and interpolation method for use in conjunction with high-order finite difference schemes. J. Comput. Phys. 157, 588–617 (2000)MathSciNetCrossRefMATH Tam, C.K.W., Kurbatskii, K.A.: A wavenumber based extrapolation and interpolation method for use in conjunction with high-order finite difference schemes. J. Comput. Phys. 157, 588–617 (2000)MathSciNetCrossRefMATH
53.
Zurück zum Zitat Ma, Y., Ge, Y.: A high order finite difference method with Richardson extrapolation for 3D convection diffusion equation. Appl. Math. Comput. 215, 3408–3417 (2010)MathSciNetMATH Ma, Y., Ge, Y.: A high order finite difference method with Richardson extrapolation for 3D convection diffusion equation. Appl. Math. Comput. 215, 3408–3417 (2010)MathSciNetMATH
54.
Zurück zum Zitat Marchi, C.H., Novak, L.A., Santiago, C.D., et al.: Highly accurate numerical solutions with repeated Richardson extrapolation for 2D Laplace equation. Appl. Math. Model. 37, 7386–7397 (2013)MathSciNetCrossRef Marchi, C.H., Novak, L.A., Santiago, C.D., et al.: Highly accurate numerical solutions with repeated Richardson extrapolation for 2D Laplace equation. Appl. Math. Model. 37, 7386–7397 (2013)MathSciNetCrossRef
55.
Zurück zum Zitat Collatz, L.: The Numerical Treatment of Differential Equations. Springer, New York (1966) Collatz, L.: The Numerical Treatment of Differential Equations. Springer, New York (1966)
Metadaten
Titel
An Extrapolation Cascadic Multigrid Method Combined with a Fourth-Order Compact Scheme for 3D Poisson Equation
verfasst von
Kejia Pan
Dongdong He
Hongling Hu
Publikationsdatum
26.08.2016
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0275-9

Weitere Artikel der Ausgabe 3/2017

Journal of Scientific Computing 3/2017 Zur Ausgabe