Skip to main content

17.01.2025

An FPGA-Based Reconfigurable Convolutional Neural Network Accelerator for Tiny YOLO-V3

verfasst von: Tsung-Han Tsai, Nai-Chieh Tung, Chun-Yu Chen

Erschienen in: Circuits, Systems, and Signal Processing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, the development of deep learning has progressed rapidly, leading to broader applications of neural networks across various domains. These applications are becoming increasingly integrated into our daily lives, such as in mobile phone unlocking, intelligent customer service, and chatbots. However, the large number of parameters and operations required by neural networks presents a challenge, necessitating execution on GPUs or embedded development boards with CUDA acceleration. This has made the design of efficient hardware architectures to accelerate neural networks a critical research focus. In this paper, we propose a reconfigurable System on a Chip (SoC) hardware architecture capable of handling various input image sizes, kernel sizes, and stride sizes. The design includes support for 1 × 1 and 3 × 3 convolutions, batch normalization, activation functions, and max-pooling operations to accelerate neural network computations. To facilitate communication between the Programmable Logic (PL) and Processing System (PS) sides, we utilize the AXI bus protocol. The PS side is responsible for data transfer and sequencing, while the PL side performs all computational tasks. To address the on-chip memory limitations and reduce the number of data transfers and communications, we implement zero-padding directly in hardware. The proposed system implements the Tiny YOLO-V3 network on the Xilinx ZCU104 platform. Experimental results demonstrate that the system achieves a throughput of 42.496 GOPs and an energy efficiency of 8.57 GOPs/W.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
5.
Zurück zum Zitat G.M. Basavaraj and A. Kusagur. Vision based surveillance system for detection of human fall. In 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore. pp. 1516–1520 (2017). https://doi.org/10.1109/RTEICT.2017.8256851 G.M. Basavaraj and A. Kusagur. Vision based surveillance system for detection of human fall. In 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore. pp. 1516–1520 (2017). https://​doi.​org/​10.​1109/​RTEICT.​2017.​8256851
6.
Zurück zum Zitat A. Carbon, J.-M. Philippe, O. Bichler, R. Schmit, B. Tain, D. Briand, N. Ventroux, M. Paindavoine, O. Brousse. PNeuro: A scalable energy-efficient programmable hardware accelerator for neural networks. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1039–1044 (2018). https://doi.org/10.23919/DATE.2018.8342165 A. Carbon, J.-M. Philippe, O. Bichler, R. Schmit, B. Tain, D. Briand, N. Ventroux, M. Paindavoine, O. Brousse. PNeuro: A scalable energy-efficient programmable hardware accelerator for neural networks. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1039–1044 (2018). https://​doi.​org/​10.​23919/​DATE.​2018.​8342165
14.
Zurück zum Zitat A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint arXiv:1704.04861 A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint arXiv:​1704.​04861
17.
Zurück zum Zitat A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)MATH A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)MATH
32.
Zurück zum Zitat K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556 K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:​1409.​1556
33.
Zurück zum Zitat Y. Sun, D. Liang, X. Wang, X. Tang. Deepid3: face recognition with very deep neural networks (2015). arXiv preprint arXiv:1502.00873 Y. Sun, D. Liang, X. Wang, X. Tang. Deepid3: face recognition with very deep neural networks (2015). arXiv preprint arXiv:​1502.​00873
36.
Zurück zum Zitat Z. YU, C.-S. Bouganis. A parameterisable FPGA-tailored architecture for YOLOv3-tiny. In Applied Reconfigurable Computing. Architectures, Tools, and Applications: 16th International Symposium, ARC 2020, Toledo, Spain, April 1–3, 2020, Proceedings 16. Springer International Publishing, pp. 330–344 (2020). https://doi.org/10.1007/978-3-030-44534-8_25 Z. YU, C.-S. Bouganis. A parameterisable FPGA-tailored architecture for YOLOv3-tiny. In Applied Reconfigurable Computing. Architectures, Tools, and Applications: 16th International Symposium, ARC 2020, Toledo, Spain, April 1–3, 2020, Proceedings 16. Springer International Publishing, pp. 330–344 (2020). https://​doi.​org/​10.​1007/​978-3-030-44534-8_​25
Metadaten
Titel
An FPGA-Based Reconfigurable Convolutional Neural Network Accelerator for Tiny YOLO-V3
verfasst von
Tsung-Han Tsai
Nai-Chieh Tung
Chun-Yu Chen
Publikationsdatum
17.01.2025
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02968-9