Skip to main content
Erschienen in: Wireless Personal Communications 2/2022

25.06.2022

An Improved Modelling of User Clustering for Small Cell Deployment in Heterogeneous Cellular Network

verfasst von: Joyatri Bora, Md. Anwar Hussain

Erschienen in: Wireless Personal Communications | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Users in practical cellular geographical areas are found to be non-uniformly distributed. Small cell (SC) deployments in heterogeneous user distribution in a cellular geographical area help to meet high data rate user demands for multimedia data communications in hot spots. SCs help to offload traffic burden from the macro cell (MC) base station, and also cater the data traffic need for the edge users where signal strength from the MC base station (BS) is very weak. For deployments of SCs along with the central MC BS (hence called HetNet) in such spatial heterogeneous user distribution, effective user grouping or clustering algorithm is required for appropriate and satisfactory service coverage. We call it service grouping or clustering of users to be put under a SC for data transmission and reception. It does not disturb the spatial positions of users in clustered non-uniform distribution. Efficient grouping or clustering of users and then deploying a SC at optimal location enhances the performance of the HetNet. It is found that the K-means algorithm used for such grouping of users to position SCs is not efficient. A novel and improved user grouping algorithm is proposed in this paper which performs much better compared to the k-means algorithm. The proposed algorithm of modelling of user clustering results in increase in the number of users under SCs, increase in more offloading of data traffic from MC BS thereby increasing data throughput of MC users. The algorithm also increases in the energy efficiencies of the SCs which is considered as one important performance metric. A doubly stochastic poison process (DSPP), also called Cox process, is assumed here for simulation of non-uniform user distributions. We consider Rayleigh distributed small scale fading model, large scale fading factor representing shadow fading, and users’ geographical distances from BSs to evaluate users’ data rates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Hughes, M. and Jovanovic, V. (2012). “Small cells—effective capacity relief option for heterogeneous networks,” in Proc. IEEE Veh. Technol. Conf. (VTC Fall), pp. 1–6. Hughes, M. and Jovanovic, V. (2012). “Small cells—effective capacity relief option for heterogeneous networks,” in Proc. IEEE Veh. Technol. Conf. (VTC Fall), pp. 1–6.
3.
Zurück zum Zitat Claussen, H., Lopez-Perez, D., Ho, L., Razavi, R., & Kucera, S. (2017). Small cell networks: deployment, management, and optimization. Wiley.CrossRef Claussen, H., Lopez-Perez, D., Ho, L., Razavi, R., & Kucera, S. (2017). Small cell networks: deployment, management, and optimization. Wiley.CrossRef
4.
Zurück zum Zitat Chu, N. E. X., & Zhang, J. (2016). Small cell deployment over existing heterogeneous networks. IET Electron Lett., 52(3), 241–243.CrossRef Chu, N. E. X., & Zhang, J. (2016). Small cell deployment over existing heterogeneous networks. IET Electron Lett., 52(3), 241–243.CrossRef
5.
Zurück zum Zitat ElSawy, H., Hossain, E., & Haenggi, M. (2013). Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A survey. IEEE Commun Surv Tutor., 15(3), 996–1019.CrossRef ElSawy, H., Hossain, E., & Haenggi, M. (2013). Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A survey. IEEE Commun Surv Tutor., 15(3), 996–1019.CrossRef
6.
Zurück zum Zitat Wang, Z., Schoenen, R., Yanikomeroglu, H., & Stilaire, M. (2014) “The impact of user spatial heterogeneity in heterogeneous cellular networks,”In 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX, 2014, pp. 1278-1283. Wang, Z., Schoenen, R., Yanikomeroglu, H., & Stilaire, M. (2014) “The impact of user spatial heterogeneity in heterogeneous cellular networks,”In 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX, 2014, pp. 1278-1283.
7.
Zurück zum Zitat Qutqut, M. H., Abou-zeid, H., Hassanein, H. S., Rashwan, A. M, Al-Turjman, F. M., “Dynamic small cell placement strategies for LTE heterogeneous networks,” Proc. 2014 IEEE Symposium on Computers and Communications (ISCC), Funchal, 2014, pp. 1-6. Qutqut, M. H., Abou-zeid, H., Hassanein, H. S., Rashwan, A. M, Al-Turjman, F. M., “Dynamic small cell placement strategies for LTE heterogeneous networks,” Proc. 2014 IEEE Symposium on Computers and Communications (ISCC), Funchal, 2014, pp. 1-6.
8.
Zurück zum Zitat Wentao, Z. et.al. (2017). “Approximation Algorithms for Cell Planning in Heterogeneous Networks”, IEEE Trans. On Vehicular Technology, vol.66, no.2. Wentao, Z. et.al. (2017). “Approximation Algorithms for Cell Planning in Heterogeneous Networks”, IEEE Trans. On Vehicular Technology, vol.66, no.2.
9.
Zurück zum Zitat Araujo, W., et al. (2018). Deployment of small cells and a transport infrastructure concurrently for next-generation mobile access networks. PLoS ONE, 13(11), e0207330.CrossRef Araujo, W., et al. (2018). Deployment of small cells and a transport infrastructure concurrently for next-generation mobile access networks. PLoS ONE, 13(11), e0207330.CrossRef
10.
Zurück zum Zitat Abonyi, D. (2019). A novel strategy for prompt small cell deployment in heterogeneous networks. Advances in Science, Technology and Engineering Systems Journal, 4(4), 265–270.CrossRef Abonyi, D. (2019). A novel strategy for prompt small cell deployment in heterogeneous networks. Advances in Science, Technology and Engineering Systems Journal, 4(4), 265–270.CrossRef
11.
Zurück zum Zitat 3GPP, “Small Cell Enhancements for E-UTRA and EUTRAN; Physical Layer aspects, (Release 12),” 3GPP TR 36.872, 2013 3GPP, “Small Cell Enhancements for E-UTRA and EUTRAN; Physical Layer aspects, (Release 12),” 3GPP TR 36.872, 2013
12.
Zurück zum Zitat 3GPP R1–130744, “WF on Evaluation Assumptions for SCE Physical Layer,” Huawei, HiSilicon, CATR, CMCC, 2013. 3GPP R1–130744, “WF on Evaluation Assumptions for SCE Physical Layer,” Huawei, HiSilicon, CATR, CMCC, 2013.
13.
Zurück zum Zitat Bien, J., & Tibshirani, R. (2011). Hierarchical clustering with prototypes via minimax linkage. Journal of the American Statistical Association, 106(495), 1075–1084.MathSciNetCrossRef Bien, J., & Tibshirani, R. (2011). Hierarchical clustering with prototypes via minimax linkage. Journal of the American Statistical Association, 106(495), 1075–1084.MathSciNetCrossRef
15.
Zurück zum Zitat Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders. The Journal of Finance, 16(1), 8–37.MathSciNetCrossRef Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders. The Journal of Finance, 16(1), 8–37.MathSciNetCrossRef
18.
Zurück zum Zitat Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: past, present, and future. IEEE J Select Areas commun, 30(3), 497–508.CrossRef Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: past, present, and future. IEEE J Select Areas commun, 30(3), 497–508.CrossRef
19.
Zurück zum Zitat Nan, E., & Chu, X. (2016). “Stochastic geometry analysis and additional small cell deployment for HetNets affected by hot spots. Mobile Information Systems, 2016, 9727891. Nan, E., & Chu, X. (2016). “Stochastic geometry analysis and additional small cell deployment for HetNets affected by hot spots. Mobile Information Systems, 2016, 9727891.
20.
Zurück zum Zitat Heath, S. W., Kountouris, M., & Bai, T. (2013). Modeling heterogeneous network interference using Poisson point processes. IEEE Transactions on Signal Processing, 61(16), 4114–4126.MathSciNetCrossRef Heath, S. W., Kountouris, M., & Bai, T. (2013). Modeling heterogeneous network interference using Poisson point processes. IEEE Transactions on Signal Processing, 61(16), 4114–4126.MathSciNetCrossRef
21.
Zurück zum Zitat Wang, Y., & Zhu, Q. (2017). Modeling and analysis of small cells based on clustered stochastic geometry. IEEE Communications Letters, 21(3), 576–579.CrossRef Wang, Y., & Zhu, Q. (2017). Modeling and analysis of small cells based on clustered stochastic geometry. IEEE Communications Letters, 21(3), 576–579.CrossRef
22.
Zurück zum Zitat ElSawy, H., Sultan-Salem, A., Alouini, M., et al. (2017). Modeling and analysis of cellular networks using stochastic geometry: A tutorial. IEEE Commun Surv. Tutor., 19(1), 167–203.CrossRef ElSawy, H., Sultan-Salem, A., Alouini, M., et al. (2017). Modeling and analysis of cellular networks using stochastic geometry: A tutorial. IEEE Commun Surv. Tutor., 19(1), 167–203.CrossRef
24.
Zurück zum Zitat Lee, C. H., Lee, S. H., Go, K. C., et al. (2015). Mobile small cells for further enhanced 5G heterogeneous networks. ETRI Journal, 37(5), 856–866.CrossRef Lee, C. H., Lee, S. H., Go, K. C., et al. (2015). Mobile small cells for further enhanced 5G heterogeneous networks. ETRI Journal, 37(5), 856–866.CrossRef
25.
Zurück zum Zitat Wu, Y., Qian, L.P., Huang, J., Shen, X. (2017). Traffic offloading in heterogeneous cellular networks. In: Radio resource management for mobile traffic offloading in heterogeneous cellular networks. Springer Briefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-51037-8_1. Wu, Y., Qian, L.P., Huang, J., Shen, X. (2017). Traffic offloading in heterogeneous cellular networks. In: Radio resource management for mobile traffic offloading in heterogeneous cellular networks. Springer Briefs in Electrical and Computer Engineering. Springer, Cham. https://​doi.​org/​10.​1007/​978-3-319-51037-8_​1.
29.
Zurück zum Zitat Tadio, E. W. & Long, B. L. (2016). “Massive MIMO and mmWave for 5G Wireless Heterogeneous Network, “IEEE Vehicular Technology Magazine, March 2016 Tadio, E. W. & Long, B. L. (2016). “Massive MIMO and mmWave for 5G Wireless Heterogeneous Network, “IEEE Vehicular Technology Magazine, March 2016
30.
Zurück zum Zitat Ahmad, F., Bernard, C., & Ayman, K. (2018). “User Selection in 5G Heterogeneous Networks based on Millimeter-Wave Beamforming,” IEEE HPCC Conference, June 2018, Exeter UK. Ahmad, F., Bernard, C., & Ayman, K. (2018). “User Selection in 5G Heterogeneous Networks based on Millimeter-Wave Beamforming,” IEEE HPCC Conference, June 2018, Exeter UK.
Metadaten
Titel
An Improved Modelling of User Clustering for Small Cell Deployment in Heterogeneous Cellular Network
verfasst von
Joyatri Bora
Md. Anwar Hussain
Publikationsdatum
25.06.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09807-7

Weitere Artikel der Ausgabe 2/2022

Wireless Personal Communications 2/2022 Zur Ausgabe

Neuer Inhalt