Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2019

Open Access 01.12.2019 | Research

An improved version of a result of Chandra, Li, and Rosalsky

verfasst von: Deli Li, Andrew Rosalsky

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2019

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For an array of rowwise pairwise negative quadrant dependent, mean 0 random variables, Chandra, Li, and Rosalsky provided conditions under which weighted averages converge in \(\mathscr{L}_{1}\) to 0. The Chandra, Li, and Rosalsky result is extended to \(\mathscr{L}_{r}\) convergence (\(1\leq r<2\)) and is shown to hold under weaker conditions by applying a mean convergence result of Sung and an inequality of Adler, Rosalsky, and Taylor.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

For an array of mean 0 random variables \(\{X_{n,j}, 1 \leq j \leq k _{n}, n \geq 1 \}\) and an array of constants \(\{a_{n,j}, 1 \leq j \leq k_{n}, n \geq 1 \}\), Chandra, Li, and Rosalsky [2, Theorem 3.1] recently provided conditions under which the weighted averages \(\sum_{j=1}^{k_{n}} a_{n,j}X_{n,j}\) obey the degenerate mean convergence law
$$ \sum_{j=1}^{k_{n}} a_{n,j}X_{n,j} \stackrel{\mathscr{L}_{1}}{\longrightarrow } 0. $$
The random variables comprising the array are assumed to be (i) rowwise pairwise negative quadrant dependent and (ii) stochastically dominated by a random variable. (Technical definitions such as these will be reviewed in Sect. 2.) In this note, Theorem 3.1 of Chandra, Li, and Rosalsky [2] is extended to \(\mathscr{L}_{r}\) convergence where \(1 \leq r < 2\) and is shown to hold under weaker conditions. This is accomplished by applying a result of Sung [3] and an inequality of Adler, Rosalsky, and Taylor [1]. This note owes much to the work of Sung [3].

2 Preliminaries

In this section, some definitions will be reviewed and the needed results of Sung [3] and Adler, Rosalsky, and Taylor [1] will be stated.
Definition 2.1
The random variables comprising an array \(\{X_{n,j}, 1 \leq j \leq k_{n}, n \geq 1 \}\) are said to be rowwise pairwise negative quadrant dependent (PNQD) if for all \(n \geq 1\) and all \(i, j \in \{1,\ldots, k_{n}\}\) (\(i \neq j\)),
$$ \mathbb{P} (X_{n,i} \leq x, X_{n,j} \leq y ) \leq \mathbb{P} (X_{n,i} \leq x ) \mathbb{P} (X_{n,j} \leq y ) \quad \text{for all } x, y \in \mathbb{R}. $$
Definition 2.2
The random variables comprising an array \(\{Y_{n,j}, 1 \leq j \leq k_{n}, n \geq 1 \}\) are said to be stochastically dominated by a random variable Y if there exists a constant D such that
$$ \mathbb{P} \bigl( \vert Y_{n,j} \vert > y \bigr) \leq D \mathbb{P} \bigl( \vert DY \vert > y \bigr), \quad y \geq 0, 1 \leq j \leq k_{n}, n \geq 1. $$
(2.1)
Lemma 2.1
(Adler, Rosalsky, and Taylor [1, Lemma 2.3])
If the random variables in the array \(\{Y_{n,j}, 1 \leq j \leq k_{n}, n \geq 1 \}\) are stochastically dominated by a random variable Y, then for all \(n \geq 1\) and \(j \in \{1,\ldots, k_{n} \}\),
$$ \mathbb{E} \bigl( \vert Y_{n,j} \vert I \bigl( \vert Y_{n,j} \vert > y \bigr) \bigr) \leq D^{2} \mathbb{E}\bigl( \vert Y \vert I\bigl( \vert DY \vert > y\bigr)\bigr) \quad \textit{for all } y \geq 0, $$
where D is as in (2.1).
Proposition 2.1
(Sung [3, Theorem 2.1])
Let \(\{X_{n,j}, 1 \leq j \leq k_{n}, n \geq 1 \}\) be an array of rowwise PNQD random variables and let \(r \in [1, 2)\). Let \(\{a_{n,j}, 1 \leq j \leq k_{n}, n \geq 1 \}\) be an array of constants. Suppose that
$$ \sup_{n \geq 1} \sum_{j=1}^{k_{n}} \vert a_{n,j} \vert ^{r} \mathbb{E} \vert X_{n,j} \vert ^{r} < \infty $$
(2.2)
and
$$ \lim_{n \rightarrow \infty } \sum_{j=1}^{k_{n}} \vert a_{n,j} \vert ^{r} \mathbb{E} \bigl( \vert X_{n,j} \vert ^{r} I \bigl( \vert a_{n,j} \vert ^{r} \vert X_{n,j} \vert ^{r} > \varepsilon \bigr) \bigr) = 0 \quad \textit{for all } \varepsilon > 0. $$
(2.3)
Then
$$ \sum_{j=1}^{k_{n}} a_{n,j} (X_{n,j} - \mathbb{E}X_{n,j} ) \stackrel{\mathscr{L}_{r}}{\longrightarrow } 0 $$
and, a fortiori,
$$ \sum_{j=1}^{k_{n}} a_{n,j} (X_{n,j} - \mathbb{E}X_{n,j} ) \stackrel{\mathbb{P}}{ \longrightarrow } 0. $$

3 Improved version of the Chandra, Li, and Rosalsky [2] result

We will now use Lemma 2.1 and Proposition 2.1 to present the following improved version of Theorem 3.1 of Chandra, Li, and Rosalsky [2].
Theorem 3.1
Let \(\{X_{n,j}, 1 \leq j \leq k_{n}, n \geq 1 \}\) be an array of rowwise PNQD mean 0 random variables which are stochastically dominated by a random variable X with \(\mathbb{E}\vert X\vert ^{r} < \infty \) for some \(r \in [1, 2)\). Let \(\{a_{n,j}, 1 \leq j \leq k_{n}, n \geq 1 \}\) be an array of constants such that
$$ \sup_{n \geq 1} \sum_{j=1}^{k_{n}} \vert a_{n,j} \vert ^{r} < \infty $$
(3.1)
and
$$ \lim_{n \rightarrow \infty } \sup_{1 \leq j \leq k_{n}} \vert a_{n,j} \vert = 0. $$
(3.2)
Then
$$ \sum_{j=1}^{k_{n}} a_{n,j} X_{n,j} \stackrel{\mathscr{L}_{r}}{\longrightarrow } 0 $$
(3.3)
and, a fortiori,
$$ \sum_{j=1}^{k_{n}} a_{n,j} X_{n,j} \stackrel{\mathbb{P}}{\longrightarrow } 0. $$
Remark 3.1
Before proving Theorem 3.1, we point out that Theorem 3.1 of Chandra, Li, and Rosalsky [2]
(i)
only treated the case \(r = 1\),
 
(ii)
had the additional condition
$$ \text{for each } n \geq 1, \text{either } \min_{1 \leq j \leq k_{n}} a _{n,j} \geq 0 \text{ or } \max_{1 \leq j \leq k_{n}} a_{n,j} \leq 0, $$
 
(iii)
had the condition
$$ \sup_{n \geq 1} \sum_{j=1}^{k_{n}} \vert a_{n,j} \vert < \infty \quad \text{and} \quad \lim_{n \rightarrow \infty } \sum_{j=1}^{k_{n}} a_{n,j}^{2} = 0, $$
 
the second half of which is clearly stronger than (3.2).
Proof of Theorem 3.1
Letting D be as in (2.1) with \(Y_{n,j}\) replaced by \(X_{n,j}\), \(1 \leq j \leq k_{n}\), \(n \geq 1\) and Y replaced by X, it follows that
$$ \mathbb{E} \vert X_{n,j} \vert ^{r} \leq D^{r+1} \mathbb{E} \vert X \vert ^{r}, \quad 1 \leq j \leq k_{n}, n \geq 1. $$
Thus
$$ \sup_{n \geq 1} \sum_{j=1}^{k_{n}} \vert a_{n,j} \vert ^{r} \mathbb{E} \vert X_{n,j} \vert ^{r} \leq D^{r+1} \Biggl(\sup_{n \geq 1} \sum_{j=1}^{k_{n}} \vert a_{n,j} \vert ^{r} \Biggr) \mathbb{E} \vert X \vert ^{r} < \infty $$
by (3.1) and \(\mathbb{E}\vert X\vert ^{r} < \infty \), thereby verifying (2.2).
Next, we show that (2.3) holds. Let
$$ \lambda _{n} = D \sup_{1 \leq j \leq k_{n}} \vert a_{n,j} \vert , \quad n \geq 1. $$
Then \(\lim_{n \rightarrow \infty } \lambda _{n} = 0\) by (3.2). Now the stochastic domination hypothesis ensures that
$$ \mathbb{P} \bigl( \vert X_{n,j} \vert ^{r} > x \bigr) \leq D \mathbb{P} \bigl( \vert DX \vert ^{r} > x \bigr) = D \mathbb{P} \bigl(D \bigl(D ^{r-1} \vert X \vert ^{r} \bigr) > x \bigr), \quad x \geq 0, 1 \leq j \leq k_{n}, n \geq 1 $$
and so by Lemma 2.1 with \(Y_{n,j}\) replaced by \(\vert X_{n,j}\vert ^{r}\), \(1 \leq j \leq k_{n}\), \(n \geq 1\) and Y replaced by \(D^{r-1} \vert X\vert ^{r}\),
$$ \begin{aligned}[b] & \mathbb{E} \bigl( \vert X_{n,j} \vert ^{r} I \bigl( \vert X_{n,j} \vert ^{r} > x \bigr) \bigr) \\ &\quad \leq D^{2} \mathbb{E} \bigl(D^{r-1} \vert X \vert ^{r} I \bigl(D^{r} \vert X \vert ^{r} > x \bigr) \bigr) \\ &\quad = D^{r+1} \mathbb{E} \bigl( \vert X \vert ^{r} I \bigl(D^{r} \vert X \vert ^{r} > x \bigr) \bigr), \quad x \geq 0, 1 \leq j \leq k_{n}, n \geq 1. \end{aligned} $$
(3.4)
Then for arbitrary \(\varepsilon > 0\),
$$\begin{aligned} \sum_{j=1}^{k_{n}} \vert a_{n,j} \vert ^{r} \mathbb{E} \bigl( \vert X_{n,j} \vert ^{r} I \bigl( \vert a_{n,j} \vert ^{r} \vert X_{n,j} \vert ^{r} > \varepsilon \bigr) \bigr) \leq & D^{r+1} \sum_{j=1}^{k_{n}} \vert a_{n,j} \vert ^{r} \mathbb{E} \biggl( \vert X \vert ^{r} I \biggl(D^{r} \vert X \vert ^{r} > \frac{\varepsilon }{ \vert a_{n,j} \vert ^{r}} \biggr) \biggr) \\ \leq & D^{r+1} \Biggl(\sum_{j=1}^{k_{n}} \vert a_{n,j} \vert ^{r} \Biggr) \mathbb{E} \biggl( \vert X \vert ^{r} I \biggl( \vert X \vert ^{r} > \frac{\varepsilon }{\lambda _{n} ^{r}} \biggr) \biggr) \\ \leq & D^{r+1} \Biggl(\sup_{m \geq 1} \sum _{j=1}^{k_{m}} \vert a_{m,j} \vert ^{r} \Biggr) \mathbb{E} \biggl( \vert X \vert ^{r} I \biggl( \vert X \vert ^{r} > \frac{\varepsilon }{ \lambda _{n}^{r}} \biggr) \biggr) \\ \rightarrow & 0 \quad \text{as } n \rightarrow \infty \end{aligned}$$
by (3.1), \(\lambda _{n} \rightarrow 0\), and \(\mathbb{E}\vert X\vert ^{r} < \infty \). Thus (2.3) holds, and conclusion (3.3) follows from Proposition 2.1. □
Remark 3.2
See Chandra, Li, and Rosalsky [2] for examples
(i)
showing that Theorem 3.1 can fail if the PNQD hypothesis is dispensed with,
 
(ii)
showing that \(\sum_{j=1}^{k_{n}} a_{n,j}X_{n,j} \rightarrow 0\) almost surely does not necessarily hold under the hypotheses of Theorem 3.1.
 

4 Conclusions

For an array of rowwise PNQD random variables \(\{X_{n,j}, 1 \leq j \leq k_{n}, n \geq 1 \}\), conditions are provided under which the following degenerate mean convergence law holds:
$$ \sum_{j=1}^{k_{n}}a_{n,j}X_{n,j} \stackrel{\mathscr{L}_{r}}{\longrightarrow } 0, $$
where \(1 \leq r < 2\), \(\mathbb{E}X_{n,j} = 0\), \(1 \leq j \leq k_{n}\), \(n \geq 1\), and \(\{a_{n,j}, 1 \leq j \leq k_{n}, n \geq 1 \}\) is an array of constants. This result is an improved version of Theorem 3.1 of Chandra, Li, and Rosalsky [2] in that \(\mathscr{L}_{1}\) convergence is extended to \(\mathscr{L}_{r}\) convergence and the hypotheses are weakened. The result is obtained by applying a result of Sung [3] and an inequality of Adler, Rosalsky, and Taylor [1].

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
Metadaten
Titel
An improved version of a result of Chandra, Li, and Rosalsky
verfasst von
Deli Li
Andrew Rosalsky
Publikationsdatum
01.12.2019
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2019
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-019-1980-3

Weitere Artikel der Ausgabe 1/2019

Journal of Inequalities and Applications 1/2019 Zur Ausgabe